基于岭估计的有理多项式参数求解方法

袁修孝, 林先勇

袁修孝, 林先勇. 基于岭估计的有理多项式参数求解方法[J]. 武汉大学学报 ( 信息科学版), 2008, 33(11): 1130-1133.
引用本文: 袁修孝, 林先勇. 基于岭估计的有理多项式参数求解方法[J]. 武汉大学学报 ( 信息科学版), 2008, 33(11): 1130-1133.
YUAN Xiuxiao, LIN Xianyong. A Method for Solving Rational Polynomial Coefficients Based on Ridge Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1130-1133.
Citation: YUAN Xiuxiao, LIN Xianyong. A Method for Solving Rational Polynomial Coefficients Based on Ridge Estimation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1130-1133.

基于岭估计的有理多项式参数求解方法

基金项目: 国家973计划资助项目(2006CB701302);国家创新研究群体科学基金资助项目(40721001)
详细信息
    作者简介:

    袁修孝,博士,教授,博士生导师。主要从事航空航天遥感高精度对地目标定位理论与方法、高分辨率卫星遥感影像几何处理等的研究与教学工作。代表成果:GPS辅助空中三角测量等。已出版著作5部,发表论文90余篇。

  • 中图分类号: P237.3;TP751

A Method for Solving Rational Polynomial Coefficients Based on Ridge Estimation

Funds: 国家973计划资助项目(2006CB701302);国家创新研究群体科学基金资助项目(40721001)
  • 摘要: 在使用最小二乘法解算卫星遥感影像的RPC参数时,如果控制点非均匀分布或模型过度参数化,其法方程系数矩阵很容易产生病态,获得的解将偏离真值,甚至得到错误的解。使用岭估计可改善法方程的状态,保证解稳定。采用岭估计方法,通过所获取的不同岭参数对SPOT和QuickBird影像进行实验,证实L曲线法是一种稳定的、有效的岭参数确定方法,可显著提高RPC参数的解算精度。
    Abstract: If the distribution of the control points is asymmetric or the model is over parameterized,the problem of ill-conditioned normal equation easily occurs during solving the rational polynomial coefficients(RPC) of satellite imagery.Traditional least squares adjustment can't get reliable solution.Ridge estimation is introduced to ameliorate the condition of the normal equation and to ensure that the solution is reliable.The basic principle of solving RPC by using ridge estimation is introduced.SPOT and QuickBird imagery are processed by different regularization techniques.The empirical results have verified that L-curve method is a reliable and valid way for choosing the ridge parameter,and it could improve the accuracy of the solution distinctly.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-26
  • 修回日期:  2008-09-26
  • 发布日期:  2008-11-04

目录

    /

    返回文章
    返回