TANG Yonghe, LU Huanzhang. Morphological Edge Detection Algorithm Based on Multi-structure Elements Compound Filter[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 50-53.
Citation: TANG Yonghe, LU Huanzhang. Morphological Edge Detection Algorithm Based on Multi-structure Elements Compound Filter[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 50-53.

Morphological Edge Detection Algorithm Based on Multi-structure Elements Compound Filter

More Information
  • Received Date: September 17, 2011
  • Published Date: January 04, 2012
  • In order to improve the performance of morphological edge detection algorithm,a compound filter with multi-structure elements was designed.At the same time,a morphological gradient with orientation was defined.On the basis of that,a noise immune morphological edge detection algorithm was presented.Noise suppression and detail preservation capability of morphological transformation mode and structure element were developed sufficiently.Edge was detected with structure elements which possessed direction information,and it was thinned with one pixel width by implementing non-maxima suppression along the orientation of gradient.Simulation results indicate that the proposed algorithm not only performs better in edge detection,noise immunity and processing speed.
  • Related Articles

    [1]MA Tian-en, LIU Tao, DU Ping, CHEN Po-yi, LING Zhen-fei. A 3D Point Cloud Semantic Segmentation Method for Aggregating Global Context Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230143
    [2]XIANG Xueyong, LI Guangyun, WANG Li, ZONG Wenpeng, LÜ Zhipeng, XIANG Fengzhuo. Semantic Segmentation of Point Clouds Using Local Geometric Features and Dilated Neighborhoods[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 534-541. DOI: 10.13203/j.whugis20200567
    [3]YANG Yuqi, CHEN Chi, YANG Bisheng, HU Pingbo, CUI Yang. 3D Change Detection of Buildings Based on Multi-level Segmentation of Dense Matching Point Clouds from UAV Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 489-496. DOI: 10.13203/j.whugis20190030
    [4]JIANG Tengping, YANG Bisheng, ZHOU Yuzhou, ZHU Runsong, HU Zongtian, DONG Zhen. Bilevel Convolutional Neural Networks for 3D Semantic Segmentation Using Large-scale LiDAR Point Clouds in Complex Environments[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1942-1948. DOI: 10.13203/j.whugis20200081
    [5]ZHANG Ruiju, ZHOU Xin, ZHAO Jianghong, CAO Min. A Semantic Segmentation Algorithm of Ancient Building's Point Cloud Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 753-759. DOI: 10.13203/j.whugis20180428
    [6]YAN Li, XIE Hong, HU Xiaobin, BAO Xiuwu. A New Hybrid Plane Segmentation Approach of Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 517-521.
    [7]HU Ju, YANG Liao, SHEN Jinxiang, WU Xiaobo. Filtering of LiDAR Based on Segmentation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 318-321.
    [8]ZHAN Qingming ZHOU Xingang, XIAO Yinghui, YU Liang, . 对古建筑激光扫描点云进行分割、识别,并利用Hough变换和最小二乘法从点云中提取直线和圆,取得了较满意的结果。对两种算法的提取效果进行了比较。[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 674-677.
    [9]ZHENG Zhaobao. Research About New Method of Image Segmentation Based on Attractor[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1192-1196.
    [10]JIANG Jingjue, ZHANG Zuxun, MING Ying. Filtering of Lidar Point Clouds for Complex Cityscapes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 402-405.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return