TONG Xiaohua, SHI Wenzhong, LIU Dajie. Error Distribution, Error Tests and Processing for Digitized Data in GIS[J]. Geomatics and Information Science of Wuhan University, 2000, 25(1): 79-84.
Citation: TONG Xiaohua, SHI Wenzhong, LIU Dajie. Error Distribution, Error Tests and Processing for Digitized Data in GIS[J]. Geomatics and Information Science of Wuhan University, 2000, 25(1): 79-84.

Error Distribution, Error Tests and Processing for Digitized Data in GIS

More Information
  • Received Date: July 28, 1999
  • Published Date: January 04, 2000
  • Error analysis and processing for spatial data is one of the key issues in GIS research. In order to present the optimal error processing model, the characteristic and distribution of the error in GIS data must be studied thoroughly in the first place. However, it should begin with capturing methods for spatial data. In this paper, error distributions, error tests and error processing of GIS spatial data from manual digitization are studied systematically. According to the statistical characteristics of the random error, the probability density functions of the normal, the Laplace and the p-norm distribution are derived based on the different axioms. It is proved on the theoretical point that the random errors do not always follow normal distribution but are likely to other distributions such as Laplace distribution, p-norm distribution, etc. Based on this idea, repeated manual digitization experiments are carried out by several operators under the same circumstance. By eliminating the effect of the systematic and gross errors, various statistical distribution fitness tests including Kurtosis and Skewness tests, Chi-Square test and Komogorov test for the random error in manual digitization are conducted. It is found that the random error in manual digitization obeys not the normal and Laplace distribution but the p-norm distribution (p≈1.6). Based on this, least p-norm estimation for adjusting digitized data is analyzed, and the results are discussed Compared with least square estimation. It can be seen that the least p-norm adjustment is better than least square adjustment for digitized data processing in GIS.
  • Related Articles

    [1]MAO Weihua, LI Wanqiu, LI Aiqin, JIANG Tao, JI Yuanming, LIU Li, WANG Wei. Monitoring of Crustal Vertical Deformation and Gravity Change Caused by Environmental Load in Wenzhou-Lishui Region Using CORS Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1508-1516. DOI: 10.13203/j.whugis20190004
    [2]WANG Wei, ZHANG Chuanyin, YANG Qiang, ZOU Zhengbo, ZHU Jinjie, KANG Shengjun. Impact of Atmospheric Pressure Loading on Regional Crustal Deformation and Gravity Change[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1302-1308. DOI: 10.13203/j.whugis20160392
    [3]ZHANG Chuanyin, WANG Wei, GAN Weijun, LI Hui, ZHANG Qingtao. Monitoring Temporal and Spatial Changes of Crustal Deformation and Gravity Field Caused by Environmental Load in the Three Gorges Reservoir Region Based on CORS Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1287-1294. DOI: 10.13203/j.whugis20160419
    [4]ZHOU Dongxu, ZHOU Xinghua, ZHANG Huayi, WANG Zhaoyang, TANG Qiuhua. Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 516-522. DOI: 10.13203/j.whugis20140714
    [5]LIU Jingnan, ZHANG Huayi, LIU Yanxiong, CHEN Wu, ZHOU Xinghua. Progress of Ocean Tide Loading Inversion Based on GNSS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 9-14. DOI: 10.13203/j.whugis20150621
    [6]ZHANG Jie, LI Fei, LOU Yidong, HAO Weifeng. Ocean Tide Loading Effect on GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1400-1404.
    [7]ZHANG Shiyu, ZHONG Min. Vertical Crustal Displacements in China Due to Surface Fluid Changes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 458-461.
    [8]HUANG Yong, LI Yingbing, GUO Junyi. Green's Functions of Atmosphere Loading:the Effect of Pressure[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 577-580.
    [9]LI Yingbing, HUANG Yong, GUO Junyi, XU Shaoquan. Green's Functions of Atmospheric Gravitation Loading[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 435-439.
    [10]LUO Shaocong. The Model of Evaluating Precisions for Atmospheric Loading Respond Corrections[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 217-221.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return