ZHANG Yongjun, ZHANG Zuxun, ZHANG Jianqing. Camera Calibration Using 2D-DLT and Bundle Adjustment with Planar Scenes[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 566-571.
Citation: ZHANG Yongjun, ZHANG Zuxun, ZHANG Jianqing. Camera Calibration Using 2D-DLT and Bundle Adjustment with Planar Scenes[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 566-571.

Camera Calibration Using 2D-DLT and Bundle Adjustment with Planar Scenes

More Information
  • Received Date: August 31, 2002
  • Published Date: June 04, 2002
  • A flexible camera calibration technique using 2D-DLT and bundle adjustment with planar scenes is proposed in this paper. The equation of principal vertical line under image coordinate system represented by 2D-DLT parameters is worked out using the correspondence between collinearity equations and 2D-DLT. Proof of ambiguities in camera parameter decomposition with 2D-DLT parameters is given. Initial value of principal point can be obtained with at least two equations of principal vertical lines. Proof of critical motion sequences(CMS) is also given in detail. The practical decomposition algorithm of extrinsic parameters using initial values of principal point, focal length and 2D-DLT parameters is discussed elaborately. Planar-scene camera calibration algorithm with bundle adjustment(using collinearity equations) is addressed. For the proposed technique, either the camera or the planar pattern can be moved freely, and the motion need not be known. Very good results have been obtained with both computer simulations and real data calibration.
  • Related Articles

    [1]ZHAO Yinghao, ZHOU Letao, FENG Wei, JIANG Zhongshan, LUO Chenxi. Analysis of Time-Varying Characteristic of GPS Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1212-1219. DOI: 10.13203/j.whugis20170337
    [2]ZHOU Guoqing, HUANG Jingjin, SHU Lei. An FPGA-Based P-H Method On-Board Solution for Satellite Relative Attitude[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1838-1846. DOI: 10.13203/j.whugis20180248
    [3]ZHENG Kai, GUO Bofeng, ZHANG Xiaohong. Research of Clock Jump Effect on Velocity Estimation with a Single GPS Receiver[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 304-308, 327. DOI: 10.13203/j.whugis20150119
    [4]WANG Jin, SONG Maozhong. Design of a Software Receiver for GPS Weak Signal Acquisition[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 846-849.
    [5]GU Xiaochen, ZHANG Minxuan. Multi-output LFSR Based Uniform Pseudo Random Number Generator[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 566-569.
    [6]ZHOU Zebo, SHEN Yunzhong, LI Bofeng. Analysis of GPS Dual-frequency Single Differenced Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 724-727.
    [7]SUN Xiyan, JI Yuanfa, SHI Huli, WANG Xiaolan. Algorithms for Removing Narrow-band Interference Based on Software GPS Receiver[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 77-80.
    [8]ZHAO Bo, XIONG Quan, HAN Bixia. Research of SMS4's Implementation in Hardware Based on Embedded System[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1015-1017.
    [9]ZHAO Bo, LIU Shubo, TANG Ming, ZHANG Huanguo. Implementation of Trusted Computing in CommercialCryptogram Based on Hardware[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 1030-1033.
    [10]GUO Jinyun, XU Panlin, QU Guoqing. A Three-Dimensional Method for Checking the Antenna Phase Center Bias of GPS Receiver[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 448-451.

Catalog

    Article views (1821) PDF downloads (375) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return