LIU Chun, SHI Wenzhong, LIU Dajie. Quality Control for Attribute Data in Digital Land Information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 244-248.
Citation: LIU Chun, SHI Wenzhong, LIU Dajie. Quality Control for Attribute Data in Digital Land Information[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 244-248.

Quality Control for Attribute Data in Digital Land Information

More Information
  • Received Date: December 09, 2003
  • Published Date: March 04, 2004
  • The rate of disfigurement is put forward to measure the accuracy of attribute data based on the sampling inspection.To a real GIS application as land information system, it is basic to collect the land use data and to establish its spatial database when developing the application of land use information system.Generally, the attribute data is regarded as an emphasis of the whole land use data set for its main content of the spatial analysis.So the enhancement of quality control for attribute data can be propitious to set up integrity land information system and provide the reliable service by land use analysis. The inspection, determination and analysis of the attribute data quality are discussed.The rate of disfigurement model is described in detail based on the simple random sample and the stratified sample.
  • Related Articles

    [1]MAO Weihua, LI Wanqiu, LI Aiqin, JIANG Tao, JI Yuanming, LIU Li, WANG Wei. Monitoring of Crustal Vertical Deformation and Gravity Change Caused by Environmental Load in Wenzhou-Lishui Region Using CORS Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1508-1516. DOI: 10.13203/j.whugis20190004
    [2]WANG Wei, ZHANG Chuanyin, YANG Qiang, ZOU Zhengbo, ZHU Jinjie, KANG Shengjun. Impact of Atmospheric Pressure Loading on Regional Crustal Deformation and Gravity Change[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1302-1308. DOI: 10.13203/j.whugis20160392
    [3]ZHANG Chuanyin, WANG Wei, GAN Weijun, LI Hui, ZHANG Qingtao. Monitoring Temporal and Spatial Changes of Crustal Deformation and Gravity Field Caused by Environmental Load in the Three Gorges Reservoir Region Based on CORS Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1287-1294. DOI: 10.13203/j.whugis20160419
    [4]ZHOU Dongxu, ZHOU Xinghua, ZHANG Huayi, WANG Zhaoyang, TANG Qiuhua. Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 516-522. DOI: 10.13203/j.whugis20140714
    [5]LIU Jingnan, ZHANG Huayi, LIU Yanxiong, CHEN Wu, ZHOU Xinghua. Progress of Ocean Tide Loading Inversion Based on GNSS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 9-14. DOI: 10.13203/j.whugis20150621
    [6]ZHANG Jie, LI Fei, LOU Yidong, HAO Weifeng. Ocean Tide Loading Effect on GPS Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1400-1404.
    [7]ZHANG Shiyu, ZHONG Min. Vertical Crustal Displacements in China Due to Surface Fluid Changes[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 458-461.
    [8]HUANG Yong, LI Yingbing, GUO Junyi. Green's Functions of Atmosphere Loading:the Effect of Pressure[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 577-580.
    [9]LI Yingbing, HUANG Yong, GUO Junyi, XU Shaoquan. Green's Functions of Atmospheric Gravitation Loading[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 435-439.
    [10]LUO Shaocong. The Model of Evaluating Precisions for Atmospheric Loading Respond Corrections[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 217-221.

Catalog

    Article views (618) PDF downloads (138) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return