Fang Shenghui, Le Yuan, Liang Qi. Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis Across a Range of Vegetation Species[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 296-302.
Citation: Fang Shenghui, Le Yuan, Liang Qi. Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis Across a Range of Vegetation Species[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 296-302.

Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis Across a Range of Vegetation Species

More Information
  • Received Date: September 05, 2013
  • Published Date: March 04, 2015
  • Continuous wavelet transform is used for vegetation hyperspectral analysis at two scales among four data sets. The relationship between chlorophyll content and wavelet coefficients was built,and the accuracy was compared to the vegetation index emphasis model. Cross validation was carried out between different data sets. The results show that the accuracy of the wavelet coefficients model is higher than the other models at both scales. Several wavelet features were suitable for chlorophyll retrieval from simulated and measured data seta at the same scale.
  • Related Articles

    [1]YE Tong, LI Houpu, ZHONG Yexun, JIN Lixin. Analytical Expressions of Differences Between Commonly Used Latitudes and Reduced Latitude[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 473-480. DOI: 10.13203/j.whugis20200004
    [2]DU Zhiqiang, LI Yu, ZHANG Yeting, TAN Yuqi, ZHAO Wenhao. Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355. DOI: 10.13203/j.whugis20200047
    [3]GUI Dezhu, CHENG Pengfei, WEN Hanjiang, ZHANG Chengcheng. Technology Innovation of Surveying, Mapping and Geoinformation for Natural Resource Management[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 97-100. DOI: 10.13203/j.whugis20180355
    [4]HUANG Xueping, DENG Min, WU Jing, MA Hangying. Integrated Representation and Description of Natural-language Spatial Relations Between a Line and an Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 230-234.
    [5]DENG Min, HUANG Xueping, LIU Huimin, LI Guangqiang. An Approach for Spatial Query Based on Natural-Language Spatial Relations[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1089-1093.
    [6]PAN Donghua, WANG Jingai, JIA Huicong, ZHAO Jintao. Study of Cartographic Generalization on Natural Disaster Risk Mapping-Taking Point Hazard-affected Bodies as an Example[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 51-55.
    [7]SHEN Jinxiang, YANG Liao, LUO Jiancheng, SHEN Zhanfeng. SPOT Natural-Color Simulation with Spectrum Analysis[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1436-1439.
    [8]LIN Aiwen, NIU Jiqiang, HU Lifeng. Evaluation of Natural Resources with Grey Clustering Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 164-167.
    [9]MAOQingzhou, HESaixian, CHENChangjun. Object Extracting in Nature-Light Image[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 63-65.
    [10]MA Linbing, GONG Jianya. Application of Spatial Information Natural Language Query Interface[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3): 301-305.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return