XIE Mingxia, WANG Jiayao, GUO Jianzhong, CHEN Ke. Similarity Measurement in High Dimensional Space Based on Unequally Spaced Partition[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 780-783.
Citation: XIE Mingxia, WANG Jiayao, GUO Jianzhong, CHEN Ke. Similarity Measurement in High Dimensional Space Based on Unequally Spaced Partition[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 780-783.

Similarity Measurement in High Dimensional Space Based on Unequally Spaced Partition

Funds: 国家863计划资助项目(2009AA12Z228);;数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放研究基金资助项目(GCWD201105)
More Information
  • Received Date: April 23, 2012
  • Published Date: July 04, 2012
  • Because of the curse of dimensionality,the traditional similarity measurement has been unfit for the high dimensional space.And the equally spaced partition can't represent the data distribution,so the similarity measurement based on that can't compute the similarity between high dimensional data reasonably.Aimed at these problems,the existing improved similarity measurements for high dimensional space are introduced firstly,and the problems are analyzed.Then,improves the similarity measurement PIDist(X,Y,kd) based on unequally spaced partition of each dimension.Finally,the experimental result of clustering heart-statlog and vehicle data sets provided by UCI proves the validity of the proposed similarity measurement.
  • Related Articles

    [1]YU Rui, LIU Yang, WANG Qingquan, GAO Jianwei, ZHANG Yu, HU Yufeng. Comprehensive Comparative Analysis of Long-Term, Multi-mode, and Multi-frequency GNSS-IR Tide Inversion[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2210-2222. DOI: 10.13203/j.whugis20240057
    [2]WANG Leyang, MIAO Wei. Medium-Long Term Forecasting Method for Earth Rotation Parameters Considering Effective Angular Momentum Information[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1846-1855. DOI: 10.13203/j.whugis20220246
    [3]HUANG Yangjin, CHANG Guobin, HUAN Yueyang. Modeling of Colored Noise in Long-term GNSS Coordinate Series and its Impact[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240149
    [4]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [5]ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233
    [6]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [7]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [8]WANG Yupu, LV Zhiping, CHEN Zhengsheng, HUANG Lingyong, LI Linyang, GONG Xiaochun. A New Data Preprocessing Method for Satellite Clock Bias and Its Application in WNN to Predict Medium-term and Long-term Clock Bias[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 373-379. DOI: 10.13203/j.whugis20140216
    [9]GONG Hang, LIU Zengjun, PENG Jing, WANG Feixue. Estimation Method of GNSS On-Board Clock Short-Term Stability Based on Smoothed Broadcast Ephemeris[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 837-841.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return