CHEN Liucheng. How Navigation Satellite Orbit Numerical Integration Affected by Shadow Model and Its Correcting Methods[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 450-453.
Citation: CHEN Liucheng. How Navigation Satellite Orbit Numerical Integration Affected by Shadow Model and Its Correcting Methods[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 450-453.

How Navigation Satellite Orbit Numerical Integration Affected by Shadow Model and Its Correcting Methods

More Information
  • Received Date: January 27, 2007
  • Revised Date: January 27, 2007
  • Published Date: May 04, 2007
  • In this article, it is analyzed that how the GEO orbit propagation with a singe step numerical integrator, the representative Runge-Kutta(RKF7(8))method, or a multi-steps one, the representative 12 degrees PECE method, affected by the boundaries of cylinder shadow model or conical shadow model. And more, some correcting methods are introduced according to the idiographic problems. All the introduced methods are convenient for users to program with simple principles, and lead to high accuracy corrected orbit. The maximal bias in 3 day length arcs is in centimeter magnitude, even less.
  • Related Articles

    [1]YAO Yibin, LUO Yiyong, ZHANG Jingying, ZHAO Chunjie. Correlation Analysis Between Haze and GNSS Tropospheric Delay Based on Coherent Wavelet[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2131-2138. DOI: 10.13203/j.whugis20180234
    [2]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [3]WU Zhaocong, OUYANG Qundong, HU Zhongwen, LIU Ling. Application of Four-component Scattering Model in Speckle Filtering of Polarimetric SAR Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 763-766.
    [4]WANG Qing, XU Xin, GUAN Bao, SUN Hong. An Algorithm for SAR Image Filtering Based on Bayesian Principle and MRF Modeling[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 464-467.
    [5]SHAO Haimei, MEI Tiancan, QIN Qianqing. Spread Spectrum Watermark Based on Wavelet Transform for Digital Image[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 626-629.
    [6]BU Fangling, XU Xin. A Speckle Filtering Method of SAR Images Based on Wavelet Analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 26(4): 315-319,330.
    [7]ZHANG Xiaodong, LI Deren, CAI Dongxiang, MA Hongchao. à trous Wavelet Decomposition Applied to Detecting Image Edge[J]. Geomatics and Information Science of Wuhan University, 2001, 26(1): 29-33.
    [8]Xu Xin, Liao Mingsheng, Zhu Pan, Pu Fangling. Research on Speckle Filtering of Single-look SAR Image[J]. Geomatics and Information Science of Wuhan University, 1999, 24(4): 312-316.
    [9]Yu Xiaojiang, Luan Shangkui, Zhu Guangshi. Object Speckle Method of Measuring Angular Displacement of Markless Objects with Spherical Surface[J]. Geomatics and Information Science of Wuhan University, 1993, 18(4): 88-93.
    [10]Yu Xiaojiang. Some Statistic Characters of Speckle Field Diffused by a Spherical Screen[J]. Geomatics and Information Science of Wuhan University, 1992, 17(4): 79-86.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return