ZHANG Yu, ZHAO Qile, JIANG Kecai, GUO Xiang, LI Min. High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1763-1769. DOI: 10.13203/j.whugis20240198
Citation: ZHANG Yu, ZHAO Qile, JIANG Kecai, GUO Xiang, LI Min. High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1763-1769. DOI: 10.13203/j.whugis20240198

High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3

More Information
  • Received Date: May 22, 2024
  • Available Online: June 26, 2024
  • Objectives 

    Lutan-1(LT-1) is the first formation-flying mission of China, enabling interfero‑metry synthetic aperture radar (InSAR) in the L-band. High-precision inter-satellite baseline is crucial for InSAR processing and application.

    Methods 

    We investigate the dynamic precise baseline solution method and the inter-satellite double-difference ambiguity fixing method of low-orbit formation satellite, and analyze the contribution of BDS-3 (B1C, B2a) and GPS (L1, L2) observation of LT-1 A/B in precise baseline determination.

    Results 

    The results show that compared with GPS, the residuals of B1C and B2a observations of BDS-3 are significantly smaller, suggesting a higher signal accuracy.The baseline overlap accuracies of GPS-based, BDS-based, and GPS/BDS combined solutions are 0.8 mm, 0.6 mm, and 0.5 mm, respectively. The BDS-based baseline accuracy is 25% higher than that of GPS, and the GPS/BDS combined solution can further improve the baseline accuracy by 37.5% and 16.7% relative to the GPS- and BDS-baselines.The baseline difference between the GPS-based and BDS-based baseline solutions is 1 mm in 3 dimensional directions.

    Conclusions 

    The analysis suggests that the single BDS-3 system can achieve precise baseline determination for low-orbit formation satellites at the 1 mm level and combined GPS/BDS solution will further improve the accuracy than single-system solution.

  • [1]
    晓曲. 陆地探测一号01组卫星[J]. 卫星应用, 2022(3): 70.

    Xiao Qu. Landsat-1 01 Group Satellite[J]. Satellite Application, 2022(3): 70.
    [2]
    Liu Bin,Zhang Li,Ge Daqing,et al. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation [J].Geomatics and Information Science of Wuhan University,2023,DOI:10.13203/j.whugis20230478.(刘斌, 张丽, 葛大庆, 等. 陆地探测-1号卫星滑坡大变形InSAR监测应用[J]. 武汉大学学报(信息科学版),2023,DOI: 10.13203/j.whugis20230478.) doi: 10.13203/j.whugis20230478
    [3]
    China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 3.0)[EB/OL].(2021-05-01)[2024-05-01].http://www.beidou.gov.cn/xt/gfxz/202105/P020210526216231136238.pdf.
    [4]
    Zhao X L, Zhou S S, Ci Y, et al. High-Precision Orbit Determination for a LEO Nanosatellite Using BDS-3[J]. GPS Solutions, 2020, 24(4): 102.
    [5]
    Li M, Mu R H, Jiang K C, et al. Precise Orbit Determination for the Haiyang-2D Satellite Using New Onboard BDS-3 B1C/B2a Signal Measurements[J]. GPS Solutions, 2022, 26(4): 137.
    [6]
    Jiang K C, Li W W, Li M, et al. Precise Orbit Determination of Haiyang-2D Using Onboard BDS-3 B1C/B2a Observations with Ambiguity Resolution[J]. Satellite Navigation, 2023, 4(1): 28.
    [7]
    Kroes R, Montenbruck O, Bertiger W, et al. Precise GRACE Baseline Determination Using GPS[J]. GPS Solutions, 2005, 9(1): 21-31.
    [8]
    Guo X, Geng J H, Chen X Y, et al. Enhanced Orbit Determination for Formation-Flying Satellites Through Integrated Single- and Double-Difference GPS Ambiguity Resolution[J]. GPS Solutions, 2019, 24(1): 14.
    [9]
    Allende-Alba G, Montenbruck O, Jäggi A, et al. Reduced-Dynamic and Kinematic Baseline Determination for the Swarm Mission[J]. GPS Solutions, 2017, 21(3): 1275-1284.
    [10]
    Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10187-10203.
    [11]
    Hatch R. The Synergism of GPS Code and Carrier Measurements[C]//The 3rd International Symposium on Satellite Doppler Positioning,New York, USA, 1982.
    [12]
    Melbourne W G. The Case for Ranging in GPS-Based Geodetic Systems[C]//The1st International Symposium on Precise Positioning with the Global Positioning System,Rockville,Maryland, 1985.
    [13]
    Wübbena G. Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements[C]//The 1st International Symposium on Precise Position with GPS, Rockville, Maryland, 1985.
    [14]
    Liu J N, Ge M R. PANDA Software and Its Preliminary Result of Positioning and Orbit Determination[J].Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609.
    [15]
    Guo X, Zhao Q L. M-Estimation-Based Robust and Precise Baseline Determination for Formation-Flying Satellites[J]. GPS Solutions, 2021, 25(2): 48.
    [16]
    Guo X, Zhao Q L, Ditmar P, et al. Improvements in the Monthly Gravity Field Solutions Through Modeling the Colored Noise in the GRACE Data[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(8): 7040-7054.
    [17]
    Geng J H, Chen X Y, Pan Y X, et al. A Modified Phase Clock/Bias Model to Improve PPP Ambiguity Resolution at Wuhan University[J]. Journal of Geo‑desy, 2019, 93(10): 2053-2067.
    [18]
    Bähr H, Altamimi Z, Heck B. Variance Component Estimation for Combination of Terrestrial Reference Frames[M]. Karlsruhe :KIT Scientific Publishing, 2007.
    [19]
    Jäggi A, Dach R, Montenbruck O, et al. Phase Center Modeling for LEO GPS Receiver Antennas and Its Impact on Precise Orbit Determination[J]. Journal of Geodesy, 2009, 83(12): 1145-1162.
    [20]
    Mao X Y, Arnold D, Kalarus M, et al. GNSS-Based Precise Orbit Determination for Maneuvering LEO Satellites[J].GPS Solutions,2023,27(3): 147.
    [21]
    Huang C, Song S L, Cheng N, et al. Data Quality Analysis of Multi-GNSS Signals and Its Application in Improving Stochastic Model for Precise Orbit Determination[J]. Atmosphere, 2022, 13(8): 1253.
    [22]
    王西龙, 许小龙, 赵齐乐. 北斗三号系统信号质量分析及轨道精度验证[J]. 武汉大学学报(信息科学版), 2023, 48(4): 611-619.

    Wang Xilong, Xu Xiaolong, Zhao Qile. Signal Quality Analysis and Orbit Accuracy Verification of BDS-3[J].Geomatics and Information Science of Wuhan University, 2023, 48(4): 611-619.
    [23]
    张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018.

    Zhang Qiang. Research on Key Technologies of Precise Orbit Determination of LEO Satellites and Their Formations Using GPS and BeiDou[D].Wuhan: Wuhan University, 2018.
    [24]
    He L N, He X X, Huang Y. Enhanced Precise Orbit Determination of BDS-3 MEO Satellites Based on Ambiguity Resolution with B1C/B2a Dual-Frequency Combination[J].Measurement,2022,205: 112197.
  • Related Articles

    [1]LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
    [2]LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478
    [3]YANG Chengsheng, LI Xiaoyang, ZHANG Qin, WEI Yunjie, LI Zufeng, ZHU Sainan. Monitoring and Analysis of Post-Earthquake Landslide in Sindhupalchowk District, Nepal Based on InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1684-1696. DOI: 10.13203/j.whugis20230258
    [4]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [5]LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and Monitoring of Potential Landslides Along Minjiang River Valley in Maoxian County, Sichuan Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. DOI: 10.13203/j.whugis20210367
    [6]ZHANG Shuangcheng, SI Jinzhao, XU Yongfu, NIU Yufen, FAN Qianyou, ZHU Wu, AN Peng, GUO Yanhui. Time-Series InSAR for Stability Monitoring of Ankang Airport with Expansive Soil[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1519-1528. DOI: 10.13203/j.whugis20210223
    [7]SHI Xuguo, ZHANG Lu, XU Qiang, ZHAO Kuanyao, DONG Jie, JIANG Houjun, LIAO Mingsheng. Monitoring Slope Displacements of Loess Terrace Using Time Series InSAR Analysis Technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1027-1034. DOI: 10.13203/j.whugis20190056
    [8]ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, PENG Jianbing, XU Qiang. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. DOI: 10.13203/j.whugis20190072
    [9]XU Xiaolan, LI Fei. Application of InSAR and DInSAR to Zhongba Earthquake[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 727-729.
    [10]LI Zhenhong, LIU Jingnan, XU Caijun. Error Analysis in InSAR Data Processing[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 72-76.

Catalog

    Article views (381) PDF downloads (121) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return