ZHANG Yu, ZHAO Qile, JIANG Kecai, GUO Xiang, LI Min. High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1763-1769. DOI: 10.13203/j.whugis20240198
Citation: ZHANG Yu, ZHAO Qile, JIANG Kecai, GUO Xiang, LI Min. High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1763-1769. DOI: 10.13203/j.whugis20240198

High-Precision Inter-Satellite Baseline Determination Method for Lutan-1 Based on BDS-3

More Information
  • Received Date: May 22, 2024
  • Available Online: June 26, 2024
  • Objectives 

    Lutan-1(LT-1) is the first formation-flying mission of China, enabling interfero‑metry synthetic aperture radar (InSAR) in the L-band. High-precision inter-satellite baseline is crucial for InSAR processing and application.

    Methods 

    We investigate the dynamic precise baseline solution method and the inter-satellite double-difference ambiguity fixing method of low-orbit formation satellite, and analyze the contribution of BDS-3 (B1C, B2a) and GPS (L1, L2) observation of LT-1 A/B in precise baseline determination.

    Results 

    The results show that compared with GPS, the residuals of B1C and B2a observations of BDS-3 are significantly smaller, suggesting a higher signal accuracy.The baseline overlap accuracies of GPS-based, BDS-based, and GPS/BDS combined solutions are 0.8 mm, 0.6 mm, and 0.5 mm, respectively. The BDS-based baseline accuracy is 25% higher than that of GPS, and the GPS/BDS combined solution can further improve the baseline accuracy by 37.5% and 16.7% relative to the GPS- and BDS-baselines.The baseline difference between the GPS-based and BDS-based baseline solutions is 1 mm in 3 dimensional directions.

    Conclusions 

    The analysis suggests that the single BDS-3 system can achieve precise baseline determination for low-orbit formation satellites at the 1 mm level and combined GPS/BDS solution will further improve the accuracy than single-system solution.

  • [1]
    晓曲. 陆地探测一号01组卫星[J]. 卫星应用, 2022(3): 70.

    Xiao Qu. Landsat-1 01 Group Satellite[J]. Satellite Application, 2022(3): 70.
    [2]
    Liu Bin,Zhang Li,Ge Daqing,et al. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation [J].Geomatics and Information Science of Wuhan University,2023,DOI:10.13203/j.whugis20230478.(刘斌, 张丽, 葛大庆, 等. 陆地探测-1号卫星滑坡大变形InSAR监测应用[J]. 武汉大学学报(信息科学版),2023,DOI: 10.13203/j.whugis20230478.) doi: 10.13203/j.whugis20230478
    [3]
    China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 3.0)[EB/OL].(2021-05-01)[2024-05-01].http://www.beidou.gov.cn/xt/gfxz/202105/P020210526216231136238.pdf.
    [4]
    Zhao X L, Zhou S S, Ci Y, et al. High-Precision Orbit Determination for a LEO Nanosatellite Using BDS-3[J]. GPS Solutions, 2020, 24(4): 102.
    [5]
    Li M, Mu R H, Jiang K C, et al. Precise Orbit Determination for the Haiyang-2D Satellite Using New Onboard BDS-3 B1C/B2a Signal Measurements[J]. GPS Solutions, 2022, 26(4): 137.
    [6]
    Jiang K C, Li W W, Li M, et al. Precise Orbit Determination of Haiyang-2D Using Onboard BDS-3 B1C/B2a Observations with Ambiguity Resolution[J]. Satellite Navigation, 2023, 4(1): 28.
    [7]
    Kroes R, Montenbruck O, Bertiger W, et al. Precise GRACE Baseline Determination Using GPS[J]. GPS Solutions, 2005, 9(1): 21-31.
    [8]
    Guo X, Geng J H, Chen X Y, et al. Enhanced Orbit Determination for Formation-Flying Satellites Through Integrated Single- and Double-Difference GPS Ambiguity Resolution[J]. GPS Solutions, 2019, 24(1): 14.
    [9]
    Allende-Alba G, Montenbruck O, Jäggi A, et al. Reduced-Dynamic and Kinematic Baseline Determination for the Swarm Mission[J]. GPS Solutions, 2017, 21(3): 1275-1284.
    [10]
    Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10187-10203.
    [11]
    Hatch R. The Synergism of GPS Code and Carrier Measurements[C]//The 3rd International Symposium on Satellite Doppler Positioning,New York, USA, 1982.
    [12]
    Melbourne W G. The Case for Ranging in GPS-Based Geodetic Systems[C]//The1st International Symposium on Precise Positioning with the Global Positioning System,Rockville,Maryland, 1985.
    [13]
    Wübbena G. Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements[C]//The 1st International Symposium on Precise Position with GPS, Rockville, Maryland, 1985.
    [14]
    Liu J N, Ge M R. PANDA Software and Its Preliminary Result of Positioning and Orbit Determination[J].Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609.
    [15]
    Guo X, Zhao Q L. M-Estimation-Based Robust and Precise Baseline Determination for Formation-Flying Satellites[J]. GPS Solutions, 2021, 25(2): 48.
    [16]
    Guo X, Zhao Q L, Ditmar P, et al. Improvements in the Monthly Gravity Field Solutions Through Modeling the Colored Noise in the GRACE Data[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(8): 7040-7054.
    [17]
    Geng J H, Chen X Y, Pan Y X, et al. A Modified Phase Clock/Bias Model to Improve PPP Ambiguity Resolution at Wuhan University[J]. Journal of Geo‑desy, 2019, 93(10): 2053-2067.
    [18]
    Bähr H, Altamimi Z, Heck B. Variance Component Estimation for Combination of Terrestrial Reference Frames[M]. Karlsruhe :KIT Scientific Publishing, 2007.
    [19]
    Jäggi A, Dach R, Montenbruck O, et al. Phase Center Modeling for LEO GPS Receiver Antennas and Its Impact on Precise Orbit Determination[J]. Journal of Geodesy, 2009, 83(12): 1145-1162.
    [20]
    Mao X Y, Arnold D, Kalarus M, et al. GNSS-Based Precise Orbit Determination for Maneuvering LEO Satellites[J].GPS Solutions,2023,27(3): 147.
    [21]
    Huang C, Song S L, Cheng N, et al. Data Quality Analysis of Multi-GNSS Signals and Its Application in Improving Stochastic Model for Precise Orbit Determination[J]. Atmosphere, 2022, 13(8): 1253.
    [22]
    王西龙, 许小龙, 赵齐乐. 北斗三号系统信号质量分析及轨道精度验证[J]. 武汉大学学报(信息科学版), 2023, 48(4): 611-619.

    Wang Xilong, Xu Xiaolong, Zhao Qile. Signal Quality Analysis and Orbit Accuracy Verification of BDS-3[J].Geomatics and Information Science of Wuhan University, 2023, 48(4): 611-619.
    [23]
    张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018.

    Zhang Qiang. Research on Key Technologies of Precise Orbit Determination of LEO Satellites and Their Formations Using GPS and BeiDou[D].Wuhan: Wuhan University, 2018.
    [24]
    He L N, He X X, Huang Y. Enhanced Precise Orbit Determination of BDS-3 MEO Satellites Based on Ambiguity Resolution with B1C/B2a Dual-Frequency Combination[J].Measurement,2022,205: 112197.
  • Cited by

    Periodical cited type(1)

    1. 李军,祝会忠,路阳阳,徐爱功. 一种基于载波平滑伪距的BDS伪距增强定位方法. 武汉大学学报(信息科学版). 2024(12): 2187-2198 .

    Other cited types(0)

Catalog

    Article views (402) PDF downloads (125) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return