XUE Shuqiang, YANG Cheng, BIAN Jiachao, YANG Wenlong, ZHAO Shuang. Active Sonar Time Window Navigation and Positioning Model Without Appending External Navigation Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240131
Citation: XUE Shuqiang, YANG Cheng, BIAN Jiachao, YANG Wenlong, ZHAO Shuang. Active Sonar Time Window Navigation and Positioning Model Without Appending External Navigation Information[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240131

Active Sonar Time Window Navigation and Positioning Model Without Appending External Navigation Information

More Information
  • Received Date: September 19, 2024
  • Objectives: Due to the inherent difficulty of time synchronization of submarine navigation beacons, underwater navigation usually adopts an active positioning model. However, the model is always ill-defined, that is, each observation corresponds to two waiting points at which the carrier signal is sent and received. When the carrier motion is ignored, half of the signal round-trip travel time can be used as the observed value to locate the signal, but this will inevitably introduce model errors, especially in deepsea scenes or high-speed carrier motion. If the use of Doppler velocity measurement or inertial navigation and other dead reckoning information, it will lead to sonar navigation dependent on external information, but no longer independent. Methods: In this paper, a time-window navigation and positioning model with additional carrier kinematic parameters is proposed to realize the joint estimation of carrier position, velocity, acceleration and other information, which can not only output the carrier's current moment coordinates, but also obtain the carrier's motion information at any time, such as the carrier's position, velocity and acceleration at the middle of the window. Results: The problem of the inadequacy of the active positioning model is solved effectively. At the same time, the concept of geometric factor (KDOP) is proposed to evaluate the geometric strength of time-windowed navigation. The results show that the KDOP proposed in this paper can well describe the advantages and disadvantages of the time-windowed navigation and positioning configuration, and the time-windowed navigation and positioning model is significantly superior to the traditional spatial intersection positioning model. Conclusions: The test results on the Japanese public data set show that the navigation and positioning accuracy proposed in this paper is better than 5m, and the positioning accuracy at the middle time of the window is higher.
  • [1]
    Yang Yuanxi, Xu Tianhe, Xue shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(01): 1-8. (杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(01): 1-8.)
    [2]
    Zhang J, Han Y, Zheng C, et al. Underwater target localization using long baseline positioning system[J]. Applied Acoustics, 2016, 111: 129-134.
    [3]
    Bingham B, Seering W. Hypothesis grids: improving long baseline navigation for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2006, 31(1): 209-218.
    [4]
    Xue S, Li B, Xiao Z, et al. Centimeter-level-precision seafloor geodetic positioning model with self-structured empirical sound speed profile(accepted)[J]. Satellite Navigation, 2023.
    [5]
    Webster S E, Eustice M, Singh H, et al. Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles[J/OL]. The International Journal of Robotics Research, 2012, 31(8): 935-950. DOI: 10.1177/0278364912446166.
    [6]
    Zhou Z, Li B. GNSS windowing navigation with adaptively constructed dynamic model[J/OL]. GPS Solutions, 2015, 19(1): 37-48. DOI: 10.1007/s10291-014-0363-y.
    [7]
    Yan Fengchi, Wang Zhenjie, Zhao shuang, et al. A layered constant gradient acoustic ray tracing underwater positioning algorithm considering round-trip acoustic path[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(01): 31-40.(闫凤池, 王振杰, 赵爽, 等. 顾及双程声径的常梯度声线跟踪水下定位算法[J]. 测绘学报, 2022, 51(01): 31-40.)
    [8]
    Yang yuanxi, Liu Yanxiong, Sun Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. SCIENTIA SINICA Terrae, 2020, 50(7): 936-945.(杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 中国科学:地球科学, 2020, 50(7): 936-945.)
    [9]
    Wang J, Xu T, Liu Y, et al. Augmented Underwater Acoustic Navigation with Systematic Error Modeling Based on Seafloor Datum Network[J/OL]. Marine Geodesy, 2023, 46(2): 129-148.
    [10]
    Yokota Y, Kaneda M, Hashimoto T, et al. Experimental verification of seafloor crustal deformation observations by UAV-based GNSS-A[J/OL]. Scientific Reports, 2023, 13(1): 4105. DOI:10.1038/s41598-023- 31214-6.
    [11]
    肖圳, 薛树强, 韩保民, 等. 参考声速剖面误差对主动式声呐定位影响仿真分析[J]. 地球物理学报, 2022.
    [12]
    Sun Wenzhou, Zeng Anmin, Qiao Zhengming, et al. Approximate mathematical expression of ranging error for acoustic positioning of seafloor control points[J]. Journal of Chinese Inertial Technology, 2023, 31(1): 40- 44. (孙文舟, 曾安敏, 乔正明, 等. 海底控制点水声定位测距误差的近似数学表达式[J]. 中国惯性技术学报, 2023, 31(1): 40-44. DOI: 10.13695/j.cnki.12-1222/o3.2023.01.006.)
    [13]
    LI Jingsen, XUE Shuqiang, XIAO Zhen, et al. Uncertainty Evaluation on the Arm Length Correction of GNSSA Observation [J]. Geomatics and Information Science of Wuhan University, 2023, DOI: 10.13203/j. whugis2022067. (李景森,薛树强,肖圳,等. GNSS/声呐组合观测臂长改正不确定度评估[J]. 武汉大学学报(信息科学版), 2023, DOI: 10.13203/j.whugis20220673.)
    [14]
    Ming feng, Zeng anmin. Recent advancement and research on related issues for resilient PNT[J]. Journal of Navigation and Positioning, 2022, 10(4): 1-10+48. DOI:10.16547/j.cnki.10-1096.20220401.(明锋, 曾安敏. 弹性 PNT最新进展及相关问题研究[J]. 导航定位学报, 2022, 10(4): 1-10+48. DOI:10.16547/j.cnki.10- 1096.20220401.)
    [15]
    Wang Di, Wang Bing, Huang Haoqian, et al. SINS/DVL integrated navigation method based on adaptive particle swarm optimization in complex underwater environment[J]. Journal of Chinese Inertial Technology, 2023, 31(10): 1023-1029+1036.(王迪, 王冰, 黄浩乾, 等. 复杂水下环境中自适应粒子群优化的SINS/DVL组合导航方法[J/OL]. 中国惯性技术学报, 2023, 31(10): 1023-1029+1036. DOI:10.13695/j.cnki.12- 1222/o3.2023.10.010.)
    [16]
    Gao Weiguang, Yang Yuanxi, Zhang Shuangcheng. Adaptive Robust Kalman Filtering Based on the Current Statistical Model[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1): 15-18. (高为广, 杨元喜, 张双成. 基于当前加速度模型的抗差自适应Kalman滤波[J]. 测绘学报, 2006, 35(1): 15-18.)
    [17]
    Ge Zhimin, Jiang Jinguang, Zhang Chao, et al. Application of Improved Robust and Adaptive EKF Algorithm in GNSS/INS Integrated Navigation[J]. Journal of Geodesy and Geodynamics, 2023, 43(7): 740-744. (葛志敏, 江金光, 张超, 等. 改进抗差自适应EKF算法在GNSS/INS组合导航中的应用[J]. 大地测量与地球动力学, 2023, 43(7): 740-744. )
    [18]
    SPIESS F N. Suboceanic Geodetic Measurements[J]. IEEE Transactions on Geoence and Remote Sensing, 1985, GE-23(4): 502-510.
    [19]
    Xue Shuqiang, Yang Cheng, Zhao Shuang, et al. Review of unmanned observation systems for seafloor geodetic network[J]. Journal of Navigation and Positioning, 2023, 11(06): 8-21.(薛树强, 杨诚, 赵爽, 等. 海底大地控制网无人观测系统研究进展[J]. 导航定位学报, 2023, 11(06): 8-21. )
    [20]
    Xue Shuqiang, Yang Wenlong, Zhao Shuang. The ellipsoid intersection principle of active positioning and its two solutions[J]. Journal of Navigation and Positioning, 2024, 12(03): 1-7.(薛树强, 杨文龙, 赵爽. 主动式定位的椭球交会原理及其2 种解法[J]. 导航定位学报, 2024, 12(03): 1-7.)
    [21]
    Yu Wenshen, Wu Peida, Zhang Haonan, et al. Offshore towed-streamer seismic positioning based on polynomial curve fitting[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 772-780.(余文坤, 吴佩达, 张昊楠, 等. 基于多项式曲线拟合的海上地震勘探拖缆定位[J]. 测绘学报, 2022, 51(5): 772-780. )
    [22]
    Yan Zhichuang, Xu Xinqiang, Zhao Dejun, et al. An Efficient Algorithm with Reduced Dynamic Orbit Determination for LEOs Based on Parameter Transforming[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S1): 28-37.(闫志闯, 徐新强, 赵德军, 等. 低轨卫星约化动力法定轨参数变换的高效算法[J]. 测绘学报, 2018, 47(S1): 28-37. )
    [23]
    Yang Y, Zhang X, Xu J. Adaptively Constrained Kalman Filtering for Navigation Applications[J]. Survey Review, 2011, 43(322): 370-381.
    [24]
    Yang Y, Cui X. Adaptively robust filter with multi adaptive factors[J]. Survey Review, 2008, 40(309): 260- 270.
    [25]
    Yang Yuanxi. Resilient PNT Concept Frame. [J]. Acta Geodaetica et Cartographica Sinica, 2018,47(07):893- 898.(杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018,47(07):893-898. )
    [26]
    Hu Xiaomei, Pan Xinlong, Liu Chengming. An Improved Sage-Husa Adaptive Filtering Algorithm for GNSS/SINS Integrated Navigation[J]. Journal of Geodesy and Geodynamics, 2023, 43(8): 791-794.(胡晓梅, 潘新龙, 刘成铭. GNSS/SINS组合导航的改进Sage-Husa自适应滤波算法[J]. 大地测量与地球动力学, 2023, 43(8): 791-794. DOI: 10.14075/j.jgg.2023.08.005.)
    [27]
    Bian Jiachao, Xue Shuqiang, Xiao Zhen, et al. Analysis of asymmetrical effects of surface-to-seafloor control networks[J]. Hydrographic Surveying And Charting, 2023, 43(6): 46-50. (卞加超, 薛树强, 肖圳, 等. 海面非对称航迹对海底定位精度影响分析[J]. 海洋测绘, 2023, 43(6): 46-50.)
    [28]
    Yang W, Xue S, Liu Y. P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning[J/OL]. Marine Geodesy, 2023, 46(1): 3-15. DOI: 10.1080/01490419.2021.1992547.
    [29]
    Watanabe S ichi, Ishikawa T, Yokota Y, et al. GARPOS: Analysis Software for the GNSS‐A Seafloor Positioning With Simultaneous Estimation of Sound Speed Structure[J/OL]. Frontiers in Earth Science, 2020, 8: 597532. DOI: 10.3389/feart.2020.597532.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (62) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return