YU Jianing, FANG Zhixiang, HU Xiaoyuan, YU Hongchu, WANG Zhongyuan. Analysis of Changes in Maritime Transport Networks for Strategic Materials Affected by Attacks in the Red Sea[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240099
Citation: YU Jianing, FANG Zhixiang, HU Xiaoyuan, YU Hongchu, WANG Zhongyuan. Analysis of Changes in Maritime Transport Networks for Strategic Materials Affected by Attacks in the Red Sea[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240099

Analysis of Changes in Maritime Transport Networks for Strategic Materials Affected by Attacks in the Red Sea

More Information
  • Received Date: September 10, 2024
  • As a critical mode of transportation for global trade, the security of maritime shipping is essential to international commerce. Recent armed conflicts in the Red Sea region have significantly endangered the safe passage through this vital shipping lane and have had profound effects on the global supply chain of strategic commodities. Although an increasing volume of research focuses on tracking and analyzing the longterm impacts of the shipping system following major events, there remains an urgent need to swiftly capture and analyze real-time conflicts. Such research is critical for timely responses to the challenges confronting the maritime system, thus helping to mitigate negative impacts. We first analyze changes in the number of shipping routes to assess the impact on countries across different geographic regions and geopolitical relations worldwide. Next, based on material transport changes, we evaluate shifts in the tonnage of five strategic materials and the weighted importance of these materials. Furthermore, by examining alterations in the strategic materials maritime network, we identify the affected nodes and edges in the network. Subsequently, we assess the evolution patterns of five strategic material networks by analyzing changes in network indicators. Experiment results show that: in terms of affected maritime routes, there was no decline in the number of average daily voyages for countries in Asia and Africa, while all other continents experienced a decreasing trend in voyages. The rate of decline among affected countries was notably more significant compared to unaffected ones. From the perspective of strategic materials, iron, crude oil, and LPG shipments dominated the traffic. Except for LNG, which exhibited an increase in average daily traffic, other strategic materials displayed a similar downward trend by the end of the quarter. At the network evolution level, the core nodes of the maritime network remained stable in the face of shocks. Different strategic material networks demonstrated distinct adaptation patterns, with grain and LPG networks showing an increase in the average shortest path compared to the pre-shock period, while crude oil, LPG, and iron ore networks exhibited a more aggregated and short-distance adaptation pattern. Iron ore demonstrated high stability, energy materials (LNG, LPG, and crude oil) exhibited moderate stability, and the food maritime network was the most volatile. In short, we captured and analyzed the impacts of unforeseen events on the maritime transport network in a timely manner by integrating data from various sources and employing a limited time window and geographic scope approach. The assessment reveals significant disruptions in global transport patterns within the Red Sea region, highlighting the importance of maintaining global trade flows and supply chain stability in the context of globalization.
  • [1]
    Valentine V. F., Benamara H., Hoffmann J. Maritime transport and international seaborne trade[J/OL]. Maritime Policy & Management, 2013, 40(3): 226-242. DOI: 10.1080/03088839.2013.782964.
    [2]
    Rousset L., Ducruet C. Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns[J/OL]. Networks and Spatial Economics, 2020, 20(2): 423-447. DOI: 10.1007/s11067-019-09482-5.
    [3]
    Jarumaneeroj P., Ramudhin A., Barnett Lawton J. A connectivity-based approach to evaluating port importance in the global container shipping network[J/OL]. Maritime Economics & Logistics, 2023, 25(3): 602-622. DOI: 10.1057/s41278-022-00243-9.
    [4]
    Saito T., Shibasaki R., Murakami S., et al. Global Maritime Container Shipping Networks 1969– 1981: Emergence of Container Shipping and Reopening of the Suez Canal[J/OL]. Journal of Marine Science and Engineering, 2022, 10(5): 602. DOI: 10.3390/jmse10050602.
    [5]
    Fang Z., Yu H., Lu F., et al. Maritime network dynamics before and after international events[J/OL]. Journal of Geographical Sciences, 2018, 28(7): 937-956. DOI: 10.1007/s11442-018-1514-9.
    [6]
    Ye S, Luo X, Nan Y, et al. An improved star-borne GNSS-R convolutional neural network method for sea ice detection[J/OL]. Journal of Wuhan University (Information Science Edition), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.(叶世榕, 罗歆琪, 南阳, 等. 一种改进的星载GNSS-R卷积神经网络海冰检测方法[J/OL]. 武汉大学学报(信息科学版), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.)
    [7]
    Wan C., Yan X., Zhang D., et al. Analysis of risk factors influencing the safety of maritime container supply chains[J/OL]. International Journal of Shipping and Transport Logistics, 2019, 11(6): 476-507. DOI: 10.1504/IJSTL.2019.103872.
    [8]
    Oliva S., Lazzeretti L. Adaptation, adaptability and resilience: the recovery of Kobe after the Great Hanshin Earthquake of 1995[J/OL]. European Planning Studies, 2017, 25(1): 67-87. DOI: 10.1080/09654313.2016.1260093.
    [9]
    Paul J. A., Maloni M. J. Modeling the effects of port disasters[J/OL]. Maritime Economics & Logistics, 2010, 12(2): 127-146. DOI: 10.1057/mel.2010.2.
    [10]
    Gao T., Lu J. The impacts of strait and canal blockages on the transportation costs of the Chinese fleet in the shipping network[J/OL]. Maritime Policy & Management, 2019, 46(6): 669-686. DOI: 10.1080/03088839.2019.1594423.
    [11]
    Godoy L. A. Performance of Storage Tanks in Oil Facilities Damaged by Hurricanes Katrina and Rita[J/OL]. Journal of Performance of Constructed Facilities, 2007, 21(6): 441-449. DOI: 10.1061/(ASCE)0887-3828(2007)21:6(441).
    [12]
    Wachtendorf T., Brown B., Holguin-Veras J. Catastrophe Characteristics and their Impact on Critical Supply Chains: Problematizing Materiel Convergence and Management Following Hurricane Katrina[J/OL]. Journal of Homeland Security and Emergency Management, 2013, 10(2): 497-520. DOI: 10.1515/jhsem-2012-0069.
    [13]
    Shen Z., Xu X., Li J., et al. Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean[J/OL]. Sustainability, 2019, 11(21): 6176. DOI: 10.3390/su11216176.
    [14]
    Xu H., Itoh H. Density economies and transport geography: Evidence from the container shipping industry[J/OL]. Journal of Urban Economics, 2018, 105: 121-132. DOI: 10.1016/j.jue.2017.09.002.
    [15]
    Cao X., Lam J. S. L. Simulation-based catastrophe-induced port loss estimation[J/OL]. Reliability Engineering & System Safety, 2018, 175: 1-12. DOI: 10.1016/j.ress.2018.02.008.
    [16]
    Rose A., Wei D. Estimating the Economic Consequences of a Port Shutdown: The Special Role of Resilience[J/OL]. Economic Systems Research, 2013, 25(2): 212-232. DOI: 10.1080/09535314.2012.731379.
    [17]
    Wu D., Wang N., Yu A., et al. Vulnerability analysis of global container shipping liner network based on main channel disruption[J/OL]. Maritime Policy & Management, 2019, 46(4): 394-409. DOI: 10.1080/03088839.2019.1571643.
    [18]
    Viljoen N. M., Joubert J. W. The vulnerability of the global container shipping network to targeted link disruption[J/OL]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 396-409. DOI: 10.1016/j.physa.2016.06.111.
    [19]
    Guo J., Wang S., Wang D., et al. Spatial structural pattern and vulnerability of China-Japan-Korea shipping network[J/OL]. Chinese Geographical Science, 2017, 27(5): 697-708. DOI: 10.1007/s11769-017-0903-9.
    [20]
    Wang N., Wu N., Dong L. L., et al. A study of the temporal robustness of the growing global container-shipping network[J/OL]. Scientific Reports, 2016, 6(1): 34217. DOI: 10.1038/srep34217.
    [21]
    Ducruet C., Notteboom T. The worldwide maritime network of container shipping: spatial structure and regional dynamics[J/OL]. Global Networks, 2012, 12(3): 395-423. DOI: 10.1111/j.1471-0374.2011.00355.x.
    [22]
    Yang Z. L., Qu Z. Quantitative maritime security assessment: a 2020 vision[J/OL]. IMA Journal of Management Mathematics, 2016, 27(4): 453-470. DOI: 10.1093/imaman/dpw005.
    [23]
    Shaw D. R., Grainger A., Achuthan K. Multi-level port resilience planning in the UK: How can information sharing be made easier?[J/OL]. Technological Forecasting and Social Change, 2017, 121: 126-138. DOI: 10.1016/j.techfore.2016.10.065.
    [24]
    Asadabadi A., Miller-Hooks E. Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach[J/OL]. Transportation Research Part B: Methodological, 2018, 108: 281-298. DOI: 10.1016/j.trb.2018.01.004.
    [25]
    Yang Y, Guo Y, Ju X, et al. Remote exploration of an important offshore channel: the Mandalay Channel[J]. China Mining Industry, 2023, 32(S1): 99-102.(杨怡, 郭雅, 鞠星, 等. 遥探境外重要海峡通道:曼德海峡[J]. 中国矿业, 2023, 32(S1): 99-102.)
    [26]
    Guo J., Guo S., Lv J. Potential spatial effects of opening Arctic shipping routes on the shipping network of ports between China and Europe[J/OL]. Marine Policy, 2022, 136: 104885. DOI: 10.1016/j.marpol.2021.104885.
    [27]
    Continued tensions in the Red Sea heighten risks to the global supply chain [EB/OL]. [2024-03-04]. https://baijiahao.baidu.com/s?id=1791465405832074169&wfr=spider&for=pc. (红海局势持续紧张全球供应链风险加剧[EB/OL].)
    [28]
    Guo N., Xiong W., Ouyang X, et al. A multi-level similar sub-segment matching method for spatio-temporal trajectories[J/OL]. Journal of Wuhan University (Information Science Edition), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.(郭宁, 熊伟, 欧阳雪 , 等. 时空 轨迹 多层 级相 似子 段匹 配方 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.)
    [29]
    Sheng Y, Bi S, Fan J, et al. Analysis of spatial and temporal patterns of traffic hotspots using traffic operation status indicators[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.(盛宇裕, 毕硕本, 范京津, 等. 运用交通运行状况指标分析交通热点时空模式[J/OL]. 武汉大学学报(信息科学版), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.)
    [30]
    Li Z, Wang J, Hu Y, et al. Rapid assessment of transportation network damage under the impact of widespread flooding[J/OL]. Journal of Wuhan University (Information Science Edition), 2023, 48(7): 1039-1049+990. DOI:10.13203/j.whugis20220512.(李振洪, 王建伟, 胡羽丰, 等. 大范围洪涝灾害影响下的交通网受损快速评估[J/OL]. 武汉大学学报(信息科学版), 2023, 48(7): 1039- 1049+990. DOI:10.13203/j.whugis20220512.)
    [31]
    Wan Y, Liu Y. A network community discovery algorithm based on geographically weighted center node distance[J/OL]. Journal of Wuhan University (Information Science Edition), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.(万幼, 刘耀林. 基于 地理 加权 中心 节点 距离 的网 络社 区发 现算 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.)
    [32]
    Wang Y, Li S, Ren L, et al. A feature-oriented method for automatic synthesis of cyberspace point group elements[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.(王映雪, 李少梅, 任丽秋, 等. 面向特征的网络空间点群要素自动综合方法[J/OL]. 武汉大学学报(信息科学版), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.)
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (138) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return