Citation: | YU Jianing, FANG Zhixiang, HU Xiaoyuan, YU Hongchu, WANG Zhongyuan. Analysis of Changes in Maritime Transport Networks for Strategic Materials Affected by Attacks in the Red Sea[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240099 |
[1] |
Valentine V. F., Benamara H., Hoffmann J. Maritime transport and international seaborne trade[J/OL]. Maritime Policy & Management, 2013, 40(3): 226-242. DOI: 10.1080/03088839.2013.782964.
|
[2] |
Rousset L., Ducruet C. Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns[J/OL]. Networks and Spatial Economics, 2020, 20(2): 423-447. DOI: 10.1007/s11067-019-09482-5.
|
[3] |
Jarumaneeroj P., Ramudhin A., Barnett Lawton J. A connectivity-based approach to evaluating port importance in the global container shipping network[J/OL]. Maritime Economics & Logistics, 2023, 25(3): 602-622. DOI: 10.1057/s41278-022-00243-9.
|
[4] |
Saito T., Shibasaki R., Murakami S., et al. Global Maritime Container Shipping Networks 1969– 1981: Emergence of Container Shipping and Reopening of the Suez Canal[J/OL]. Journal of Marine Science and Engineering, 2022, 10(5): 602. DOI: 10.3390/jmse10050602.
|
[5] |
Fang Z., Yu H., Lu F., et al. Maritime network dynamics before and after international events[J/OL]. Journal of Geographical Sciences, 2018, 28(7): 937-956. DOI: 10.1007/s11442-018-1514-9.
|
[6] |
Ye S, Luo X, Nan Y, et al. An improved star-borne GNSS-R convolutional neural network method for sea ice detection[J/OL]. Journal of Wuhan University (Information Science Edition), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.(叶世榕, 罗歆琪, 南阳, 等. 一种改进的星载GNSS-R卷积神经网络海冰检测方法[J/OL]. 武汉大学学报(信息科学版), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.)
|
[7] |
Wan C., Yan X., Zhang D., et al. Analysis of risk factors influencing the safety of maritime container supply chains[J/OL]. International Journal of Shipping and Transport Logistics, 2019, 11(6): 476-507. DOI: 10.1504/IJSTL.2019.103872.
|
[8] |
Oliva S., Lazzeretti L. Adaptation, adaptability and resilience: the recovery of Kobe after the Great Hanshin Earthquake of 1995[J/OL]. European Planning Studies, 2017, 25(1): 67-87. DOI: 10.1080/09654313.2016.1260093.
|
[9] |
Paul J. A., Maloni M. J. Modeling the effects of port disasters[J/OL]. Maritime Economics & Logistics, 2010, 12(2): 127-146. DOI: 10.1057/mel.2010.2.
|
[10] |
Gao T., Lu J. The impacts of strait and canal blockages on the transportation costs of the Chinese fleet in the shipping network[J/OL]. Maritime Policy & Management, 2019, 46(6): 669-686. DOI: 10.1080/03088839.2019.1594423.
|
[11] |
Godoy L. A. Performance of Storage Tanks in Oil Facilities Damaged by Hurricanes Katrina and Rita[J/OL]. Journal of Performance of Constructed Facilities, 2007, 21(6): 441-449. DOI: 10.1061/(ASCE)0887-3828(2007)21:6(441).
|
[12] |
Wachtendorf T., Brown B., Holguin-Veras J. Catastrophe Characteristics and their Impact on Critical Supply Chains: Problematizing Materiel Convergence and Management Following Hurricane Katrina[J/OL]. Journal of Homeland Security and Emergency Management, 2013, 10(2): 497-520. DOI: 10.1515/jhsem-2012-0069.
|
[13] |
Shen Z., Xu X., Li J., et al. Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean[J/OL]. Sustainability, 2019, 11(21): 6176. DOI: 10.3390/su11216176.
|
[14] |
Xu H., Itoh H. Density economies and transport geography: Evidence from the container shipping industry[J/OL]. Journal of Urban Economics, 2018, 105: 121-132. DOI: 10.1016/j.jue.2017.09.002.
|
[15] |
Cao X., Lam J. S. L. Simulation-based catastrophe-induced port loss estimation[J/OL]. Reliability Engineering & System Safety, 2018, 175: 1-12. DOI: 10.1016/j.ress.2018.02.008.
|
[16] |
Rose A., Wei D. Estimating the Economic Consequences of a Port Shutdown: The Special Role of Resilience[J/OL]. Economic Systems Research, 2013, 25(2): 212-232. DOI: 10.1080/09535314.2012.731379.
|
[17] |
Wu D., Wang N., Yu A., et al. Vulnerability analysis of global container shipping liner network based on main channel disruption[J/OL]. Maritime Policy & Management, 2019, 46(4): 394-409. DOI: 10.1080/03088839.2019.1571643.
|
[18] |
Viljoen N. M., Joubert J. W. The vulnerability of the global container shipping network to targeted link disruption[J/OL]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 396-409. DOI: 10.1016/j.physa.2016.06.111.
|
[19] |
Guo J., Wang S., Wang D., et al. Spatial structural pattern and vulnerability of China-Japan-Korea shipping network[J/OL]. Chinese Geographical Science, 2017, 27(5): 697-708. DOI: 10.1007/s11769-017-0903-9.
|
[20] |
Wang N., Wu N., Dong L. L., et al. A study of the temporal robustness of the growing global container-shipping network[J/OL]. Scientific Reports, 2016, 6(1): 34217. DOI: 10.1038/srep34217.
|
[21] |
Ducruet C., Notteboom T. The worldwide maritime network of container shipping: spatial structure and regional dynamics[J/OL]. Global Networks, 2012, 12(3): 395-423. DOI: 10.1111/j.1471-0374.2011.00355.x.
|
[22] |
Yang Z. L., Qu Z. Quantitative maritime security assessment: a 2020 vision[J/OL]. IMA Journal of Management Mathematics, 2016, 27(4): 453-470. DOI: 10.1093/imaman/dpw005.
|
[23] |
Shaw D. R., Grainger A., Achuthan K. Multi-level port resilience planning in the UK: How can information sharing be made easier?[J/OL]. Technological Forecasting and Social Change, 2017, 121: 126-138. DOI: 10.1016/j.techfore.2016.10.065.
|
[24] |
Asadabadi A., Miller-Hooks E. Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach[J/OL]. Transportation Research Part B: Methodological, 2018, 108: 281-298. DOI: 10.1016/j.trb.2018.01.004.
|
[25] |
Yang Y, Guo Y, Ju X, et al. Remote exploration of an important offshore channel: the Mandalay Channel[J]. China Mining Industry, 2023, 32(S1): 99-102.(杨怡, 郭雅, 鞠星, 等. 遥探境外重要海峡通道:曼德海峡[J]. 中国矿业, 2023, 32(S1): 99-102.)
|
[26] |
Guo J., Guo S., Lv J. Potential spatial effects of opening Arctic shipping routes on the shipping network of ports between China and Europe[J/OL]. Marine Policy, 2022, 136: 104885. DOI: 10.1016/j.marpol.2021.104885.
|
[27] |
Continued tensions in the Red Sea heighten risks to the global supply chain [EB/OL]. [2024-03-04]. https://baijiahao.baidu.com/s?id=1791465405832074169&wfr=spider&for=pc. (红海局势持续紧张全球供应链风险加剧[EB/OL].)
|
[28] |
Guo N., Xiong W., Ouyang X, et al. A multi-level similar sub-segment matching method for spatio-temporal trajectories[J/OL]. Journal of Wuhan University (Information Science Edition), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.(郭宁, 熊伟, 欧阳雪 , 等. 时空 轨迹 多层 级相 似子 段匹 配方 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.)
|
[29] |
Sheng Y, Bi S, Fan J, et al. Analysis of spatial and temporal patterns of traffic hotspots using traffic operation status indicators[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.(盛宇裕, 毕硕本, 范京津, 等. 运用交通运行状况指标分析交通热点时空模式[J/OL]. 武汉大学学报(信息科学版), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.)
|
[30] |
Li Z, Wang J, Hu Y, et al. Rapid assessment of transportation network damage under the impact of widespread flooding[J/OL]. Journal of Wuhan University (Information Science Edition), 2023, 48(7): 1039-1049+990. DOI:10.13203/j.whugis20220512.(李振洪, 王建伟, 胡羽丰, 等. 大范围洪涝灾害影响下的交通网受损快速评估[J/OL]. 武汉大学学报(信息科学版), 2023, 48(7): 1039- 1049+990. DOI:10.13203/j.whugis20220512.)
|
[31] |
Wan Y, Liu Y. A network community discovery algorithm based on geographically weighted center node distance[J/OL]. Journal of Wuhan University (Information Science Edition), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.(万幼, 刘耀林. 基于 地理 加权 中心 节点 距离 的网 络社 区发 现算 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.)
|
[32] |
Wang Y, Li S, Ren L, et al. A feature-oriented method for automatic synthesis of cyberspace point group elements[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.(王映雪, 李少梅, 任丽秋, 等. 面向特征的网络空间点群要素自动综合方法[J/OL]. 武汉大学学报(信息科学版), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.)
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |