LI Yongsheng, LI Qiang, JIAO Qisong, JIANG Wenliang, LI Bingquan, ZHANG Jingfa, LUO Yi. Application of Lutan -1 SAR Satellite Constellation to Earthquake Industry and Its Prospect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1741-1752. DOI: 10.13203/j.whugis20230498
Citation: LI Yongsheng, LI Qiang, JIAO Qisong, JIANG Wenliang, LI Bingquan, ZHANG Jingfa, LUO Yi. Application of Lutan -1 SAR Satellite Constellation to Earthquake Industry and Its Prospect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1741-1752. DOI: 10.13203/j.whugis20230498

Application of Lutan -1 SAR Satellite Constellation to Earthquake Industry and Its Prospect

More Information
  • Received Date: January 04, 2024
  • Available Online: February 25, 2024
  • Objectives 

    Lutan-1 (LT-1), as the first constellation of civil L-band interferometric synthetic aperture radar (InSAR) satellites in China, primarily focuses on surface deformation measurement by leveraging the differential interferometric, while also possessing height measurement and fully polarimetric imaging capabilities. With its dual-satellite formation imaging mode, it can achieve a strict revisit period of four days, which is highly beneficial for surface deformation monitoring and emergency response to natural disasters such as earthquakes. From the perspective of the LT-1 SAR satellite's imaging capabilities and the demands of the seismic industry, we primarily highlight the preliminary applications of the satellite system during the testing phase. The main objective is to evaluate the satellite data's capabilities in co-seismic deformation monitoring, emergency observations, and remote sensing interpretation of active fault zones. The ultimate purpose is to provide a reference for the future commercialization of seismic applications, based on the potential applications of the satellite data in these fields.

    Methods 

    Taking the examples of the 2022 Luding earthquake in Sichuan Province,China, the 2023 Turkey earthquake, and the Jishishan earthquake in Gansu Province, China, coseismic deformation monitoring will be conducted. The deformation maps will be assessed in terms of accuracy and monitoring capabilities. Additionally, emergency assessments of secondary earthquake hazards and remote sensing investigations of active fault zones will be carried out based on the high-resolution SAR data from the LT-1 satellite.

    Results 

    By comparing the co-seismic deformation results derived from LT-1 satellites with the results from concurrent other SAR satellites and global navigation satellite system (GNSS) measurements, it has been verified that the LT-1 satellite has significant advantages in terms of monitoring accuracy and spatiotemporal resolution. In addition, leveraging the high-resolution advantage of LT-1 SAR satellite imagery, it is possible to quickly obtain information on the distribution of earthquake-induced landslides and accurately delineate the accessibility of roads in the affected area. This capability effectively supports earthquake emergency response and disaster assessment efforts. Furthermore, thanks to the L-band sensor, the LT-1 satellite exhibits strong penetration capabilities, thus enabling the detection of hidden faults.

    Conclusions 

    Through multiple case studies in the seismic industry, encompassing various areas such as coseismic deformation monitoring, emergency response, and hidden fault detection, the results have demonstrated that the LT-1 satellite constellation has a significant breadth and depth of applications in the seismic industry. In the future, it will effectively support scientific research on seismic cycles and earthquake emergency operations.

  • [1]
    Elliott J R, Walters R J, Wright T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016,7: 13844.
    [2]
    Li Y S, Jiang W L, Zhang J F, et al. Sentinel-1 SAR-Based Coseismic Deformation Monitoring Service for Rapid Geodetic Imaging of Global Earthquakes[J].Natural Hazards Research, 2021, 1(1): 11-19.
    [3]
    Li Y S, Jiang W L, Zhang J F. A Time Series Processing Chain for Geological Disasters Based on a GPU-Assisted Sentinel-1 InSAR Processor[J]. Natural Hazards, 2022,111(1): 803-815.
    [4]
    Biggs J, Wright T J. How Satellite InSAR Has Grown from Opportunistic Science to Routine Monitoring over the LastDecade[J]. Nature Communications,2020, 11:3863.
    [5]
    Pritchard M E, Simons M. A Satellite Geodetic Survey of Large-Scale Deformation of Volcanic Centres in the Central Andes[J].Nature,2002,418: 167-171.
    [6]
    Wright T J, Elliott J R, Wang H, et al. Earthquake Cycle Deformation and the Moho: Implications for the Rheology of Continental Lithosphere[J]. Tectonophysics,2013, 609: 504-523.
    [7]
    Xu W B, Wu S B, Materna K, et al. Interseismic Ground Deformation and Fault Slip Rates in the Greater San Francisco Bay Area from Two Decades of Space Geodetic Data[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 8095-8109.
    [8]
    Li B Q, Li Y S, Jiang W L, et al. Conjugate Ruptures and Seismotectonic Implications of the 2019 Mindanao Earthquake Sequence Inferred from Sentinel-1 InSARData[J].International Journal of Applied Earth Observation and Geoinformation, 2020,90: 102127.
    [9]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6):887-897.

    Li Zhenhong, Han Bingquan, Liu Zhenjiang,et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
    [10]
    Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature,1993, 364: 138-142.
    [11]
    Feng W P, Li Z H, Hoey T, et al. Patterns and Mechanisms of Coseismic and Postseismic Slips of the 2011 Mw 7.1 van (Turkey) Earthquake Revealed by Multi-platform Synthetic Aperture Radar Interferometry[J].Tectonophysics, 2014, 632: 188-198.
    [12]
    Funning G J, Garcia A. A Systematic Study of Earthquake Detectability Using Sentinel-1 Interferometric Wide-Swath Data[J]. Geophysical Journal International, 2019,216(1): 332-349.
    [13]
    Wang T, Wei S J, Shi X H, et al. The 2016 Kaikōura Earthquake: Simultaneous Rupture of the Subduction Interface and Overlying Faults[J].Earth and Planetary Science Letters, 2018, 482: 44-51.
    [14]
    Qu C Y, Shan X J, Zhao D Z, et al. Relationships Between InSAR Seismic Deformation and Fault Motion Sense, Fault Strike, and Ascending/Descending Modes[J]. Acta Geologica Sinica, 2017, 91(1): 93-108.
    [15]
    Weiss J R, Walters R J, Morishita Y, et al. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data[J]. Geophysical Research Letters,2020,47(17): e2020GL087376.
    [16]
    Bekaert D P S, Hooper A, Wright T J. Reassessing the 2006 Guerrero Slow-Slip Event, Mexico: Implications for Large Earthquakes in the Guerrero Gap[J]. Journal of Geophysical Research: Solid Earth, 2015,120(2): 1357-1375.
    [17]
    Hamling I J, Hreinsdóttir S, Clark K, et al. Complex Multifault Rupture During the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand[J]. Science, 2017,356(6334): 7194.
    [18]
    Wang H, Wright T J, Biggs J. Interseismic Slip Rate of the Northwestern Xianshuihe Fault from InSAR Data[J]. Geophysical Research Letters, 2009, 36(3):L03302.
    [19]
    Hussain E, Wright T J, Walters R J, et al. Constant Strain Accumulation Rate Between Major Earthquakes on the North Anatolian Fault[J]. Nature Communications,2018, 9:1392.
    [20]
    李永生,冯万鹏,张景发,等.2014年美国加州纳帕Mw 6.1地震断层参数的Sentinel-1A InSAR反演[J].地球物理学报,2015,58(7):2339-2349.

    Li Yongsheng, Feng Wanpeng, Zhang Jingfa, et al. Coseismic Slip of the 2014 Mw 6.1 Napa, California Earthquake Revealed by Sentinel-1A InSAR[J]. Chinese Journal of Geophysics, 2015, 58(7): 2339-2349.
    [21]
    Li Y S, Tian Y F, Yu C, et al. Present-Day Interseismic Deformation Characteristics of the Beng Co-Dongqiao Conjugate Fault System in Central Tibet: Implications from InSAR Observations[J].Geophysical Journal International, 2019, 221(1): 492-503.
    [22]
    Li Y S, Jiang W L, Li YJ, et al. Coseismic Rupture Model and Tectonic Implications of the January 7 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation[J]. Remote Sensing,2022, 14(9): 2111.
    [23]
    Li Y S, Li Y J, Liang K, et al. Coseismic Displacement and Slip Distribution of the 21 May 2021 Mw 6.1 Earthquake in Yangbi, China Derived from InSAR Observations[J].Frontiers in Environmental Science, 2022, 10: 857739.
    [24]
    Liu J H, Hu J, Li Z W, et al. Three-Dimensional Surface Displacements of the 8 January 2022 Mw 6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations[J].Remote Sensing, 2022, 14(6): 1404.
    [25]
    李文浩. L波段差分干涉SAR卫星远近波位联合基线检校技术研究[D]. 阜新:辽宁工程技术大学, 2023.

    Li Wenhao. Research on the Joint Baseline Calibration Technology of L-band Differential Interferometric SAR Satellite in Near and Far Wave Positions[D]. Fuxin:Liaoning Technical University, 2023.
    [26]
    Li T, Tang X M, Zhou X Q, et al. LuTan-1 SAR Main Applications and Products[C]//The 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 2022.
    [27]
    Olivier C,Trouvé E. Surface Displacement Measurement from Remote Sensing Images[M].New York:Wiley, 2022.
    [28]
    Xu L W,Mohanna S, Meng L S, et al.The Overall-Subshear and Multi-segment Rupture of the 2023 Mw 7.8 Kahramanmaraş, Turkey Earthquake in Millennia Supercycle[J]. Communications Earth & Environment, 2023,4: 379.
    [29]
    Geospatial Information Authority of Japan.The2023Turkey Earthquake: Crustal Deformation Detected by ALOS-2 Data,2023[EB/OL].(2023-02-09) [2023-02-25].https://www.gsi.go.jp/cais/topic-20230206-e_Turkey.html.
    [30]
    杨九元,温扬茂,许才军. InSAR观测揭示的 2023 年甘肃积石山Ms 6.2 地震发震构造[J].武汉大学学报(信息科学版),2024,DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    Yang Jiuyuan,Wen Yangmao,Xu Caijun. Seismogenic Fault Structure of the 2023 Jishishan (Gansu) Ms 6.2 Earthquake Revealed by InSAR Observations[J].Geomatics and Information Science of Wuhan University,2024,DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501
    [31]
    焦其松, 姜文亮, 李强, 等. GF-7卫星图像快速解析青海门源Ms 6.9级地震的地表破裂带[J]. 遥感学报, 2022, 26(9):1895-1908.

    Jiao Qisong, Jiang Wenliang, Li Qiang, et al. Rapid Emergency Analysis of the Surface Rupture Related to the Qinghai Menyuan Ms 6.9 Earthquake on January 8, 2022, Using GF-7 Satellite Images[J].National Remote Sensing Bulletin, 2022, 26(9): 1895-1908.
    [32]
    姜文亮, 张景发, 申旭辉, 等. 高分辨率遥感技术在活动断层研究中的应用[J]. 遥感学报, 2018,22(S1):211.

    Jiang Wenliang, Zhang Jingfa, Shen Xuhui, et al. Geometric and Geomorphic Features of Active Fault Structures Interpreted from High-Resolution Remote Sensing Data[J]. Journal of Remote Sensing, 2018,22(S1):211.
    [33]
    Liu Bin, Zhang Li,Ge Daqing,et al. Application of InSAR Monitoring Large Deformation of Landslides Using LT-1 Constellation [J].Geomatics and Information Science of Wuhan University,2023,DOI:10.13203/J.whugis20230478.(刘斌,张丽,葛大庆,等. 陆地探测-1 号卫星滑坡大变形InSAR监测应用[J].武汉大学学报(信息科学版),2023,DOI:10.13203/J.whugis20230478.) doi: 10.13203/J.whugis20230478
  • Cited by

    Periodical cited type(6)

    1. 王楠,李永生,申文豪,姜文亮,李强,焦其松. 2025年1月7日西藏定日Ms 6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版). 2025(02): 404-411 .
    2. 赵金奇,陈樟杰,牛玉芬,张双成,闫鹏飞,王霞迎. 利用多时相双极化ALOS-2/PALSAR-2影像的2023年积石山Ms 6.2地震建筑物损毁检测. 武汉大学学报(信息科学版). 2025(02): 284-296 .
    3. 王文昕,杨德芳,李龙,李文军,冯光财,贺礼家,熊志强,李宁,蒋泓波,罗吴林洪,汪亿林. 类尺度不变特征变换的陆探一号卫星影像初配准算法——以积石山地震为例. 武汉大学学报(信息科学版). 2025(02): 377-390 .
    4. 齐欣,张云,刘子滔,马欣悦,姜义成. 星载高分宽幅Staggered SAR成像技术研究进展. 现代雷达. 2025(02): 1-20 .
    5. 于忠海,闫立波,刘茜,路广博,刘睿. 基于陆探一号SAR卫星的地质灾害普查监测技术研究及应用. 测绘通报. 2024(11): 97-101+176 .
    6. 于仪,李雪,陈威,李承涛,孙振. 2021年海地Mw 7.2地震震源机制与同震滑动分布研究. 武汉大学学报(信息科学版). 2024(12): 2232-2240 .

    Other cited types(4)

Catalog

    Article views (1122) PDF downloads (314) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return