CHEN Lifu, JIN Yuchen, LI Zhenhong, SONG Chuang, WANG Xiaohua, CHEN Haoda, LIU Yawu, ZHAO Junqi. Earthquake-induced Landslides Recognition from SAR Images Based on Multi-feature Cross-fused Siamese Network[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230479
Citation: CHEN Lifu, JIN Yuchen, LI Zhenhong, SONG Chuang, WANG Xiaohua, CHEN Haoda, LIU Yawu, ZHAO Junqi. Earthquake-induced Landslides Recognition from SAR Images Based on Multi-feature Cross-fused Siamese Network[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230479

Earthquake-induced Landslides Recognition from SAR Images Based on Multi-feature Cross-fused Siamese Network

More Information
  • Received Date: May 21, 2024
  • Available Online: June 23, 2024
  • Objective: Earthquake-induced mass landslides are a severe type of secondary disaster following earthquakes, causing significant casualties and substantial economic losses. Rapidly and accurately identifying these earthquake-induced landslides after an event is crucial for national emergency departments to assess disaster severity and formulate relief measures. Although Synthetic Aperture Radar (SAR) offers all-day, all-weather imaging capabilities, its effectiveness in identifying landslides is currently limited due to the complexity of the background and the less prominent features of landslides in SAR images. Methods: This paper proposes a Siamese network for landslide identification in SAR images, named the Difference and Aggregated feature Cross fusion Siamese Network (DACS-Net). This network, composed of an encoder-decoder structure, utilizes a Siamese feature extraction network in the encoder to extract features of pre- and post-earthquake SAR images at different levels. In the decoder, multiscale difference feature and aggregated feature generation modules are constructed, to perform difference extraction and feature aggregation for landslide feature maps at different scales, fully representing the characteristics of earthquake-induced landslides. The proposed multi-feature cross-fusion module densely connects and decodes different scales of aggregated and difference features layer by layer, enhancing the extraction of detail and semantic features, leading to the identification results. Results: In the experiment, Sentinel-1 data on earthquake-induced landslides in Papua New Guinea and Milin is used, and the results show that the proposed method could effectively identify earthquake-induced landslides. The landslide identification precision (PA) could reach 70.75% and 76.5%, Recall are 60.92% and 71.2%, F1 Score are 65.46% and 74.0%, and Overall Accuracy (OA) are 91.00% and 86.1% for the two cases, respectively. Conclusion: By utilizing this network, achievements have been made in the recognition of landslides in SAR images, enhancing the practical application value of deep learning networks in landslide detection. This holds significant importance for disaster emergency response.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (154) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return