Citation: | CHEN Xiude, LIU Hui, YU Baoguo, SHENG Chuanzhen, HUANG Guanwen, HUI Shenying, YING Junjun. BeiDou/GNSS Wide-Area Precise Positioning Technology and Service: Current Situation and Prospects[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 413-429. DOI: 10.13203/j.whugis20230472 |
Global navigation satellite system (GNSS) precise positioning service have been widely applied in various industries such as national defense construction, smart city, transportation, smart robot, unmanned aerial vehicle. The technology and service application of precise positioning continue to develop in recent years. First, this paper summarizes the research progress of precise positioning technologies represented by precise point positioning, precise point positioning with ambiguity resolution, and precise point positioning and real time kinematic in the aspect of multi-system and multi-frequency, atmospheric correction and ambiguity resolution. Second, it reviews the service capacity, scope and other aspects and long-term development plan of precise positioning service for the major satellite navigation systems. Then, the characteristics, service capabilities, and application progress of precise positioning service and technology provided by the mainstream commercial companies are discussed. Finally, it analyzes the challenges faced by GNSS precise positioning service, the development trends, and the future prospects.
[1] |
European GNSS Agency (GSA). Report on Road User Needs and Requirements[R]. 2018-01-08. https://www.gsc-europa.eu/system/files/galileo _documents/Road-Report-on-User-Needs-and-Requirements-v1.0.pdf.
|
[2] |
国家市场监督管理总局, 国家标准化管理委员会. 汽车驾驶自动化分级: GB/T 40429—2021[S]. 北京: 中国标准出版社,2021.
Standardization Administration of the People’s Republic of China. Road Vehicles—Diagnostic Communication over Controller Area Network (DoCAN) —Dictionary: GB/T 40429—2021[S]. Beijing: Standards Press of China, 2021.
|
[3] |
Galileo GNSS Agency. GNSS User Technology Report[R]. Publications Office of the EU, Galileo GNSS Agency, Paris, France, 2020.
|
[4] |
PENDÃO C G, FERREIRA A, MOREIRA A, et al. Challenges in Characterization of GNSS Precise Positioning Systems for Automotive[C]//International Conference on Localization and Global Navigation Satellite System, Tampere, Finland, 2020
|
[5] |
CHEN L, ZHENG F, GONG X P, et al. GNSS High-Precision Augmentation for Autonomous Vehicles: Requirements, Solution, and Technical Challenges[J]. Remote Sensing, 2023, 15(6): 1623.
|
[6] |
JOUBERT N, REID T G R, NOBLE F. Developments in Modern GNSS and Its Impact on Autonomous Vehicle Architectures[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA, 2020.
|
[7] |
RAKHMANOV A, WISEMAN Y. Compression of GNSS Data with the Aim of Speeding up Communication to Autonomous Vehicles[J]. Remote Sensing, 2023, 15(8): 2165.
|
[8] |
LI X X, ZHANG X H, REN X D, et al. Precise Positioning with Current Multi-Constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports, 2015, 5: 8328.
|
[9] |
AGGREY J, BISNATH S. Improving GNSS PPP Convergence: The Case of Atmospheric-Constrained, Multi-GNSS PPP-AR[J]. Sensors, 2019, 19(3): 587.
|
[10] |
LI X X, HUANG J X, LI X, et al. Review of PPP–RTK: Achievements, Challenges, and Opportunities[J]. Satellite Navigation, 2022, 3(1): 28.
|
[11] |
TEUNISSEN P, MONTENBRUCK O. SpringerHandbook of Global Navigation Satellite Systems [M].Berlin, Heidelberg: Springer, 2017.
|
[12] |
BISNATH S, GAO Y. Current State of Precise Point Positioning and Future Prospects and Limitations[M]// Observing our Changing Earth. Berlin, Heidelberg: Springer , 2009: 615-623.
|
[13] |
COLLINS P, LAHAYE F, BISNATH S. External Ionospheric Constraints for Improved PPP-AR Initialisation and a Generalised Local Augmentation Concept[C]//The 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, USA, 2012.
|
[14] |
CHOY S, BISNATH S, RIZOS C. Uncovering Common Misconceptions in GNSS Precise Point Positioning and Its Future Prospect[J]. GPS Solutions, 2017, 21(1): 13-22.
|
[15] |
TEUNISSEN P J G, KHODABANDEH A. Review and Principles of PPP-RTK Methods[J]. Journal of Geodesy, 2015, 89(3): 217-240.
|
[16] |
GENG J H, GUO J, MENG X L, et al. Speeding up PPP Ambiguity Resolution Using Triple-Frequency GPS/BeiDou/Galileo/QZSS Data[J]. Journal of Geodesy, 2020, 94(1): 6.
|
[17] |
WU Z Y, WANG Q X, HU C, et al. Modeling and Assessment of Five-Frequency BDS Precise Point Positioning[J]. Satellite Navigation, 2022, 3(1): 8.
|
[18] |
LI Z, CHEN W, RUAN R G, et al. Evaluation of PPP-RTK Based on BDS-3/BDS-2/GPS Observations: A Case Study in Europe[J]. GPS Solutions, 2020, 24(2): 38.
|
[19] |
ODIJK D, ZHANG B C, KHODABANDEH A, et al. On the Estimability of Parameters in Undifferenced, Uncombined GNSS Network and PPP-RTK User Models by Means of Mathcal System Theory[J]. Journal of Geodesy, 2016, 90(1): 15-44.
|
[20] |
ZHANG B C, CHEN Y C, YUAN Y B. PPP-RTK Based on Undifferenced and Uncombined Observations: Theoretical and Practical Aspects[J]. Journal of Geodesy, 2019, 93(7): 1011-1024.
|
[21] |
MA H Y, ZHAO Q L, VERHAGEN S, et al. Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area[J]. Remote Sensing, 2020, 12(20): 3343.
|
[22] |
LI X X, WANG B, LI X, et al. Principle and Performance of Multi-Frequency and Multi-GNSS PPP-RTK[J]. Satellite Navigation, 2022, 3(1): 7.
|
[23] |
LI X X, DICK G, GE M R, et al. Real-Time GPS Sensing of Atmospheric Water Vapor: Precise Point Positioning with Orbit, Clock, and Phase Delay Corrections[J]. Geophysical Research Letters, 2014, 41(10): 3615-3621.
|
[24] |
SEEPERSAD G, BISNATH S. Challenges in Assessing PPP Performance[J]. Journal of Applied Geodesy, 2014, 8(3): 205-222.
|
[25] |
GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399.
|
[26] |
LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149.
|
[27] |
GENG J H, BOCK Y. Triple-Frequency GPS Precise Point Positioning with Rapid Ambiguity Resolution[J]. Journal of Geodesy, 2013, 87(5): 449-460.
|
[28] |
ELSHEIKH M, IQBAL U, NOURELDIN A, et al. The Implementation of Precise Point Positioning (PPP): A Comprehensive Review[J]. Sensors, 2023, 23(21): 8874.
|
[29] |
LIU Y Y, YE S R, SONG W W, et al. Rapid PPP Ambiguity Resolution Using GPS+GLONASS Observations[J]. Journal of Geodesy, 2017, 91(4): 441-455.
|
[30] |
LI P, JIANG X Y, ZHANG X H, et al. GPS + Galileo + BeiDou Precise Point Positioning with Triple-Frequency Ambiguity Resolution[J]. GPS Solutions, 2020, 24(3): 78.
|
[31] |
曹新运, 沈飞, 李建成, 等. BDS-3/GNSS非组合精密单点定位[J]. 武汉大学学报(信息科学版), 2023, 48(1): 92-100.
CAO Xinyun, SHEN Fei, LI Jiancheng, et al. BDS-3/GNSS Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 92-100.
|
[32] |
李盼. GNSS精密单点定位模糊度快速固定技术和方法研究[D]. 武汉: 武汉大学, 2016.
LI Pan. Research on Methodology of Rapid Ambiguity Resolution for GNSS Precise Point Positioning[D]. Wuhan: Wuhan University, 2016.
|
[33] |
LI X X, GE M R, DAI X L, et al. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6): 607-635.
|
[34] |
LI X X, LI X, YUAN Y Q, et al. Multi-GNSS Phase Delay Estimation and PPP Ambiguity Resolution: GPS, BDS, GLONASS, Galileo[J]. Journal of Geodesy, 2018, 92(6): 579-608.
|
[35] |
LOU Y D, ZHENG F, GU S F, et al. Multi-GNSS Precise Point Positioning with Raw Single-Frequency and Dual-Frequency Measurement Models[J]. GPS Solutions, 2016, 20(4): 849-862.
|
[36] |
刘帅, 孙付平, 郝万亮, 等. 整数相位钟法精密单点定位模糊度固定模型及效果分析[J]. 测绘学报, 2014, 43(12): 1230-1237.
LIU Shuai, SUN Fuping, HAO Wanliang, et al. Modeling and Effects Analysis of PPP Ambiguity Fixing Based on Integer Phase Clock Method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1230-1237.
|
[37] |
COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135.
|
[38] |
LOYER S, PEROSANZ F, MERCIER F, et al. Zero-Difference GPS Ambiguity Resolution at CNES–CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003.
|
[39] |
BANVILLE S, COLLINS P, ZHANG W, et al. Global and Regional Ionospheric Corrections for Faster PPP Convergence[J]. Navigation, 2014, 61(2): 115-124.
|
[40] |
LI P, ZHANG X H, GUO F. Ambiguity Resolved Precise Point Positioning with GPS and BeiDou[J]. Journal of Geodesy, 2017, 91(1): 25-40.
|
[41] |
GENG J H, SHI C, GE M R, et al. Improving the Estimation of Fractional-Cycle Biases for Ambiguity Resolution in Precise Point Positioning[J]. Journal of Geodesy, 2012, 86(8): 579-589.
|
[42] |
GENG J H, CHEN X Y, PAN Y X, et al. A Modified Phase Clock/Bias Model to Improve PPP Ambiguity Resolution at Wuhan University[J]. Journal of Geodesy, 2019, 93(10): 2053-2067.
|
[43] |
YAO Y B, PENG W J, XU C Q, et al. Enhancing Real-Time Precise Point Positioning with Zenith Troposphere Delay Products and the Determination of Corresponding Tropospheric Stochastic Models[J]. Geophysical Journal International, 2017, 208(2): 1217-1230.
|
[44] |
AGGREY J, SEEPERSAD G, BISNATH S. Performance Analysis of Atmospheric Constrained Uncombined Multi-GNSS PPP[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Colorado, USA, 2017.
|
[45] |
XIANG Y, GAO Y, LI Y H. Reducing Convergence Time of Precise Point Positioning with Ionospheric Constraints and Receiver Differential Code Bias Modeling[J]. Journal of Geodesy, 2020, 94(1): 8.
|
[46] |
TANG X, JIN S G, ROBERTS G W. Prior Position- and ZWD-Constrained PPP for Instantaneous Convergence in Real-Time Kinematic Application[J]. Remote Sensing, 2021, 13(14): 2756.
|
[47] |
Wübbena G, Schmitz M, Bagge A. PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks[C]//The 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, California, USA, 2005.
|
[48] |
GENG J H, MENG X L, DODSON A H, et al. Rapid re-Convergences to Ambiguity-Fixed Solutions in Precise Point Positioning[J]. Journal of Geo⁃desy, 2010, 84(12): 705-714.
|
[49] |
LI X X, ZHANG X H, GE M R. Regional Re-ference Network Augmented Precise Point Positioning for Instantaneous Ambiguity Resolution[J]. Journal of Geodesy, 2011, 85(3): 151-158.
|
[50] |
VILLIGER A, SCHAER S, DACH R, et al. Determination of GNSS Pseudo-Absolute Code Biases and Their Long-Term Combination[J]. Journal of Geodesy, 2019, 93(9): 1487-1500.
|
[51] |
LI X, LI X X, JIANG Z H, et al. A Unified Model of GNSS Phase/Code Bias Calibration for PPP Ambiguity Resolution with GPS, BDS, Galileo and GLONASS Multi-Frequency Observations[J]. GPS Solutions, 2022, 26(3): 84.
|
[52] |
CUI B B, JIANG X Y, WANG J G, et al. A New Large-Area Hierarchical PPP-RTK Service Strategy[J]. GPS Solutions, 2023, 27(3): 134.
|
[53] |
LI P, CUI B B, HU J H, et al. PPP-RTK Consi⁃dering the Ionosphere Uncertainty with Cross-Validation[J]. Satellite Navigation, 2022, 3(1): 10.
|
[54] |
OLIVARES-PULIDO G, TERKILDSEN M, ARSOV K, et al. A 4D Tomographic Ionospheric Model to Support PPP-RTK[J]. Journal of Geodesy, 2019, 93(9): 1673-1683.
|
[55] |
AN X D, ZIEBOLD R, LASS C. PPP-RTK with Rapid Convergence Based on SSR Corrections and Its Application in Transportation[J]. Remote Sensing, 2023, 15(19): 4770.
|
[56] |
宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1832-1842.
SONG Weiwei, HE Chengpeng, GU Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842.
|
[57] |
中国卫星导航系统管理办公室,北斗卫星导航系统公开服务性能规范(3.0版): BDS-OS-PS-3.0[S].北京:中国卫星导航系统管理办公室, 2021.
China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Open Service Performance Specification (version 3.0) : BDS-OS-PS-3.0[S].Beijing, China: CSNO, 2021.
|
[58] |
XU Y Y, YANG Y X, LI J L. Performance Evaluation of BDS-3 PPP-B2b Precise Point Positioning Service[J]. GPS Solutions, 2021, 25(4): 142.
|
[59] |
TAO J, LIU J N, HU Z G, et al. Initial Assessment of the BDS-3 PPP-B2b RTS Compared with the CNES RTS[J]. GPS Solutions, 2021, 25(4): 131.
|
[60] |
Union European. Galileo High Accuracy Service Signal-in-Space Interface Control Document (HAS SIS ICD)[R]. Paris, France: European Union, 2022.
|
[61] |
PINTOR P, GONZÁLEZ E, SENADO A, et al. Galileo High Accuracy Service (HAS) Algorithm and Receiver Development and Testing[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Colorado, USA, 2022.
|
[62] |
FERNANDEZ-HERNANDEZ I, CHAMORRO-MORENO A, CANCELA-DIAZ S, et al. Galileo High Accuracy Service: Initial Definition and Performance[J]. GPS Solutions, 2022, 26(3): 65.
|
[63] |
SAKAI T. Japanese GNSS Future System Evolution in the 2020-2030 Perspective[C]//European Navigation Conference (ENC), Dresden, Germany, 2020.
|
[64] |
HIROKAWA R, FERNÁNDEZ-HERNÁNDEZ I. Open Format Specifications for PPP/PPP-RTK Services: Overview and Interoperability Assessment[C]//The International Technical Meeting of the Satellite Division of The Institute of Navigation, Colorado, USA, 2020.
|
[65] |
Office Cabinet. Quasi-Zenith Satellite System Interface Specification Muti-GNSS Advanced Orbit and Clock Augmentation - Precise Point Positioning (IS-QZSS-MDC-002)[R]. Washington, USA:Cabinet Office, 2023.
|
[66] |
YANG Y X, DING Q, GAO W G, et al. Principle and Performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite Navigation, 2022, 3(1): 5.
|
[67] |
LIU C, GAO W G, LIU T X, et al. Design and Implementation of a BDS Precise Point Positioning Service[J]. Navigation, 2020, 67(4): 875-891.
|
[68] |
中国卫星导航系统管理办公室.北斗卫星导航系统空间信号接口控制文件-精密单点定位服务信号PPP-B2b(1.0版) BDS-SIS-ICD-PPP-B2b-1.0[S]. 北京:中国卫星导航系统管理办公室, 2020.
China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Signal in Space Interface Control Document - Precise Point Positioning Service Signal PPP-B2b (Version 1.0): BDS-SIS-ICD-PPP-B2b-1.0[S]. Beijing, China: CSNO,2020.
|
[69] |
LIU Y, YANG C, ZHANG M N. Comprehensive Analyses of PPP-B2b Performance in China and Surrounding Areas[J]. Remote Sensing, 2022, 14(3): 643.
|
[70] |
赵齐乐, 陶钧, 郭靖, 等. 广域瞬时厘米级精密单点定位和服务系统[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1058-1069.
ZHAO Qile, TAO Jun, GUO Jing, et al. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069.
|
[71] |
Fernandez-Hernandez I, Vecchione G, Díaz-Pulido F, et al. Galileo High Accuracy: A Program and Policy Perspective[C]//The 69th International Astronautical Congress, Bremen, Germany, 2018.
|
[72] |
NACIRI N, YI D, BISNATH S, et al. Assessment of Galileo High Accuracy Service (HAS) Test Signals and Preliminary Positioning Performance[J]. GPS Solutions, 2023, 27(2): 73.
|
[73] |
MARTINI I, SUSI M, CUCCHI L, et al. Galileo High Accuracy Service Performance and Anomaly Mitigation Capabilities[J]. GPS Solutions, 2023, 28(1): 25.
|
[74] |
Commission European, European GNSS Agency, & European Space Agency. Galileo High Accuracy Service E6-B Signal-in-Space Message Specification v1.2[R]. Paris, France: European Commission, 2020.
|
[75] |
Union European. Galileo Services - High Accuracy Service Performance Report[R]. Paris, France: European Union, 2023.
|
[76] |
GIOIA C, BORIO D, SUSI M, et al. The Galileo High Accuracy Service (HAS): Decoding and Processing Live Corrections for Code-Based Positioning[C]//The International Technical Meeting of the Institute of Navigation, Long Beach, USA, 2022.
|
[77] |
HORST O, KIRKKO-JAAKKOLA M, MALKAMÄKI T, et al. HASlib: An Open-Source Decoder for the Galileo High Accuracy Service[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Denver, USA, 2022.
|
[78] |
ANGRISANO A, ASCIONE S, CAPPELLO G, et al. Application of “Galileo High Accuracy Service” on Single-Point Positioning[J]. Sensors, 2023, 23(9): 4223.
|
[79] |
ROVIRA-GARCIA A, TIMOTÉ C C, JUAN J M, et al. Ionospheric Corrections Tailored to the Ga-lileo High Accuracy Service[J]. Journal of Geodesy, 2021, 95(12): 130.
|
[80] |
HAUSCHILD A, MONTENBRUCK O, STEIGENBERGER P, et al. Orbit Determination of Sentinel-6A Using the Galileo High Accuracy Service Test Signal[J]. GPS Solutions, 2022, 26(4): 120.
|
[81] |
MARTINI I, SUSI M, PAONNI M, et al. Satellite Anomaly Detection with PPP Corrections: A Case Study with Galileo’s High Accuracy Service[C]//The International Technical Meeting of the the Institute of Navigation, Long Beach, USA, 2022.
|
[82] |
ZHOU P Y, XIAO G R, DU L. Initial Performance Assessment of Galileo High Accuracy Service with Software-Defined Receiver[J]. GPS Solutions, 2024, 28(1): 2.
|
[83] |
HADAS T, KAZMIERSKI K, KUDŁACIK I, et al. Galileo High Accuracy Service in Real-Time PNT, Geoscience and Monitoring Applications[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 8000905.
|
[84] |
MIYA M, FUJITA S, SATO Y, et al. Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, Its User Interface, Detailed Design, and Plan[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2016.
|
[85] |
MIYA M, FUJITA S, SATO Y, et al. Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, Design for Satellite Based RTK-PPP Services[C]//The 28th International Technical Meeting of the Satellite Division of the Institute of Navigation,Tampa, USA, 2015.
|
[86] |
MIYA M, FUJITA S, SATO Y, et al. Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System, Its User Interface, Detailed Design, and Plan[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2016.
|
[87] |
FUJITA S, SATO Y, MIYA M, et al. Design of Integrity Function on Centimeter Level Augmentation Service (CLAS) in Japanese Quasi-Zenith Satellite System[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2016.
|
[88] |
ZHANG Y Z, KUBO N, PULLEN S. Evaluation of QZSS Centimeter Level Augmentation System (CLAS): Open-Sky to Urban Environments and Geodetic to Low-Cost Receivers[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Denver, USA, 2022.
|
[89] |
RODRIGUEZ-SOLANO C, TALBOT N, ZYRYANOV G, et al. Protection Level of the Trimble RTX Positioning Engine for Autonomous Applications[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, St. Louis, USA2021.
|
[90] |
WEINBACH U, BRANDL M, CHEN X M, et al. Introducing the Next Generation of Trimble’s RTX Positioning Service[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, St. Louis, USA, 2021.
|
[91] |
GLOCKER M, LANDAU H, LEANDRO R, et al. Global Precise Multi-GNSS Positioning with Trimble Centerpoint RTX[C]//The 6th ESA Workshop on Satellite Navigation Technologies & European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, 2012.
|
[92] |
ATIZ O F, SHAKOR A Q, OGUTCU S, et al. Performance Investigation of Trimble RTX Correction Service with Multi-GNSS Constellation[J]. Survey Review, 2023, 55(388): 44-54.
|
[93] |
İLÇI V, PEKER A U. The Kinematic Performance of Real-Time PPP Services in Challenging Environment[J]. Measurement, 2022, 189: 110434.
|
[94] |
ALKAN R M. Cm-Level High Accurate Point Positioning with Satellite-Based GNSS Correction Service in Dynamic Applications[J]. Journal of Spatial Science, 2021, 66(2): 351-359.
|
[95] |
ALKAN R M, EROL S, İLÇI V, et al. Comparative Analysis of Real-Time Kinematic and PPP Techniques in Dynamic Environment[J]. Measurement, 2020, 163: 107995.
|
[96] |
OZER YIGIT C, BEZCIOGLU M, ILCI V, et al. Assessment of Real-Time PPP with Trimble RTX Correction Service for Real-Time Dynamic Displacement Monitoring Based on High-Rate GNSS Observations[J]. Measurement, 2022, 201: 111704.
|
[97] |
SHERIDAN K, TOOR P, RUSSELL D, et al. Terrastar-C: A Global GNSS Service for cm-Level Precise Point Positioning With Ambiguity Resolution[C]//European Navigation Conference, Venue, Poland, 2015.
|
[98] |
JOKINEN A, ELLUM C, WEBSTER I, et al. NovAtel CORRECT with Precise Point Positioning (PPP): Recent Developments[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2018.
|
[99] |
JOKINEN A, ELLUM C, WEBSTER I, et al. NovAtel CORRECT with Precise Point Positioning (PPP): Recent Developments[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2018.
|
[100] |
KONDRATIUK V, KONIN V, KUTSENKO O, et al. Testing Static and Kinematic Modes of Precise Point Positioning Service in Ukraine[J]. Radioelectronics and Communications Systems, 2019, 62(10): 530-540.
|
[101] |
ROBUSTELLI U, CUTUGNO M, PUGLIANO G. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the U-Blox ZED-F9P Module[J]. Sensors, 2023, 23(13): 6074.
|
[102] |
HOHENSINN R, STAUFFER R, GLANER M F, et al. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the U-Blox ZED-F9P for Kinematic Monitoring Applications[J]. Remote Sensing, 2022, 14(20): 5100.
|
[103] |
蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估: 定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.
CAI Hongliang, MENG Yinan, GENG Chang-jiang, et al. BDS-3 Performance Assessment: PNT, SBAS, PPP, SMC and SAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 427-435.
|
[104] |
ZHANG W H, WANG J L, EL-MOWAFY A, et al. Integrity Monitoring Scheme for Undifferenced and Uncombined Multi-Frequency Multi-Constellation PPP-RTK[J]. GPS Solutions, 2023, 27(2): 68.
|
[105] |
ZHANG W H, WANG J L. Integrity Monitoring Scheme for Single-Epoch GNSS PPP-RTK Positioning[J]. Satellite Navigation, 2023, 4(1): 10.
|
[106] |
HIROKAWA R, FUJITA S. A Message Authentication Proposal for SatelliteBased Nationwide PPP-RTK Correction Service[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2019.
|
[107] |
杨元喜, 徐君毅. 北斗在极区导航定位性能分析[J]. 武汉大学学报(信息科学版), 2016, 41(1): 15-20.
YANG Yuanxi, XU Junyi. Navigation Performance of BeiDou in Polar Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 15-20.
|
[108] |
杨子辉, 薛彬. 北斗卫星导航系统的发展历程及其发展趋势[J]. 导航定位学报, 2022, 10(1): 1-14.
YANG Zihui, XUE Bin. The Developed Procedures and Developing Trends of BeiDou Satellite Navigation System[J]. Journal of Navigation and Positioning, 2022, 10(1): 1-14.
|
[109] |
唐斌, 赵文军, 张天桥, 等. 北斗三号区域短报文服务解析与试验验证[C]//第十四届中国卫星导航年会论文集——S07卫星导航用户终端, 济南, 2024.
TANG Bin, ZHAO Wenjun, ZHANG Tianqiao, et al. Analysis and Test Verification of Regional Short Message Communication Service in BDS-3[C]// The 14th China Satellite Navigation Annual Conference - S07 Satellite Navigation User Terminal, Jinan, China, 2024.
|
[110] |
王纯, 杜源, 黄观文, 等. 基于北斗三号区域短报文通信的滑坡灾害监测数据传输方案设计[J]. 导航定位与授时, 2023, 10(3): 96-107.
WANG Chun, DU Yuan, HUANG Guanwen, et al. Design of Landslide Hazard Monitoring Data Transmission Scheme Based on BeiDou-3 Regional Short Message Communication[J]. Navigation Positioning and Timing, 2023, 10(3): 96-107.
|
[111] |
姬生月, 孙嘉文, 宋云记, 等. 基于北斗短报文的远海实时精密单点定位[J]. 国防科技大学学报, 2021, 43(6): 74-84.
JI Shengyue, SUN Jiawen, SONG Yunji, et al. Ocean Real-Time Precise Point Positioning Based on BeiDou Short-Message Communication[J]. Journal of National University of Defense Technology, 2021, 43(6): 74-84.
|
[112] |
郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展[J]. 全球定位系统, 2019, 44(2): 1-12.
GUO Shuren, LIU Cheng, GAO Weiguang, et al. Construction and Development of Satellite Navigation Augmentation Systems[J]. GNSS World of China, 2019, 44(2): 1-12.
|
[113] |
张恒才, 蔚保国, 秘金钟, 等. 综合PNT场景增强系统研究进展及发展趋势[J]. 武汉大学学报(信息科学版), 2023, 48(4): 491-505.
ZHANG Hengcai, YU Baoguo, BI Jinzhong, et al. A Survey of Scene⁃Based Augmentation Systems for Comprehensive PNT[J]. Acta Geodaetica et Cartographica Sinica, 2023, 48(4): 491-505.
|
[114] |
袁洪, 陈潇, 罗瑞丹, 等. 对低轨导航系统发展趋势的思考[J]. 导航定位与授时, 2022, 9(1): 1-11.
YUAN Hong, CHEN Xiao, LUO Ruidan, et al. Review of the Development Trend of LEO-Based Navigation System[J]. Navigation Positioning and Timing, 2022, 9(1): 1-11.
|
[115] |
RTCM Special Committee No. 104. Differential GNSS (Global Navigation Satellite Systems) Services – Version 3 + Amendment 1 (RTCM Standard No. 10403.3)[R]. Washington, USA: RTCM, 2020.
|
[116] |
MITSUBISHI ELECTRIC. Specification of Compact SSR Message for Satellite-Based Augmentation Service, v08(Technical Report No.RTCM SC⁃104)[R]. Los Angles, USA: MITSUBISHI ELECTRIC, 2019.
|
[117] |
李子申, 王宁波, 李亮, 等. 北斗高精度高可信PPP-RTK服务基本框架[J]. 导航定位与授时, 2023, 10(2): 7-15.
LI Zishen, WANG Ningbo, LI Liang, et al. Basic Framework of BDS-Based High-Precision and High-Credibility PPP-RTK Service[J]. Navigation Positioning and Timing, 2023, 10(2): 7-15.
|
[118] |
SAKAI T, KOGURE S. The Latest Status of Quasi-Zenith Satellite System (QZSS) and Its Future Expansion[C]//The International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2019.
|
[119] |
HIROKAWA R, NAKAKUKI K, FUJITA S, et al. The Operational Phase Performance of Centimeter-Level Augmentation Service (CLAS)[C]//ION Pacific PNT, Honolulu, USA, 2019.
|
[120] |
NAMIE H, KUBO N. Performance Evaluation of Centimeter-Level Augmentation Positioning L6-CLAS/MADOCA at the Beginning of Official Ope⁃ration of QZSS[J]. IEEJ Journal of Industry Applications, 2021, 10(1): 27-35.
|