HE Zhengjun, WU Yunlong, LI Shaobo, ZHANG Shaocheng, LI Houpu, BIAN Shaofeng. A Partition Filtering Method for 3D Sonar Point Cloud Data Considering Horizontal Deviation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1639-1649. DOI: 10.13203/j.whugis20230365
Citation: HE Zhengjun, WU Yunlong, LI Shaobo, ZHANG Shaocheng, LI Houpu, BIAN Shaofeng. A Partition Filtering Method for 3D Sonar Point Cloud Data Considering Horizontal Deviation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1639-1649. DOI: 10.13203/j.whugis20230365

A Partition Filtering Method for 3D Sonar Point Cloud Data Considering Horizontal Deviation

More Information
  • Received Date: January 25, 2024
  • Available Online: March 13, 2024
  • Objectives 

    3D sonar measurement is disturbed by the complex underwater environment and the point cloud data are usually with a high level of noise, which requires fine filtering before being applied to underwater scenes.

    Methods 

    Aiming at the shortcomings of the existing algorithms, a set of pre-processing methods for 3D sonar point cloud data is established from the aspects of reducing data complexity, local feature analysis and block filtering. First, the proposed method realizes the fine division of underwater complex space with respect to the differences in normal vector, spatial distance and echo strength of point clouds in different regions. Second, the trend surface fitting is carried out for local regions. Finally, the multi-dimensional point cloud data for error detection is constructed, the super-voxels are divided into three types of regions based on the terrain complexity, and the Grubbs test is used as a criterion of determination to realize the adaptive threshold denoising for the subregion.

    Results 

    The results show that the proposed filtering method has good accuracy for both horizontal and vertical point cloud data, with an average overall accuracy of 99.3% and an average Kappa coefficient of 0.906 for the test results.

    Conclusions 

    The results show that the synthesized filtering method has a significant improvement in accuracy compared with the traditional trend surface filtering method, and can be effectively applied to the filtering processing of three-dimensional sonar point cloud data in the underwater complex region.

  • [1]
    孙和平, 李倩倩, 鲍李峰, 等. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1555-1567.

    Sun Heping, Li Qianqian, Bao Lifeng, et al. Progress and Development Trend of Global Refined Seafloor Topography Modeling[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1555-1567.
    [2]
    杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8.

    Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1-8.
    [3]
    Yao Y B, Yang Y X, Sun H P, et al. Geodesy Discipline: Progress and Perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 1-10.
    [4]
    黄贤源, 翟国君, 隋立芬, 等. 最小二乘支持向量机在海洋测深异常值探测中的应用[J]. 武汉大学学报(信息科学版), 2010, 35(10): 1188-1191.

    Huang Xianyuan, Zhai Guojun, Sui Lifen, et al. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191.
    [5]
    董江, 任立生. 基于趋势面的多波束测深数据滤波方法[J]. 海洋测绘, 2007, 27(6): 25-28.

    Dong Jiang, Ren Lisheng. Filter of MBS Sounding Data Based on Trend Surface[J]. Hydrographic Surveying and Charting, 2007, 27(6): 25-28.
    [6]
    Mann M, Agathoklis P, Antoniou A. Automatic Outlier Detection in Multibeam Data Using Median Filtering[C]//IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, USA, 2001.
    [7]
    Rezvani M H, Sabbagh A, Ardalan A A. Robust Automatic Reduction of Multibeam Bathymetric Data Based on M-estimators[J]. Marine Geodesy, 2015, 38(4): 327-344.
    [8]
    Bourillet J F, Edy C, Rambert F, et al. Swath Mapping System Processing: Bathymetry and Cartography[J]. Marine Geophysical Researches, 1996, 18(2): 487-506.
    [9]
    Caress D W, Chayes D N. Improved Processing of Hydrosweep DS Multibeam Data on the R/V Maurice Ewing[J]. Marine Geophysical Researches, 1996, 18(6): 631-650.
    [10]
    朱庆, 李德仁. 多波束测深数据的误差分析与处理[J]. 武汉大学学报(信息科学版), 1998, 23(1): 1-4.

    Zhu Qing, Li Deren. Error Analysis and Processing of Multibeam Soundings[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 1-4.
    [11]
    付勇先. 海底地形的多波束测深数据预处理及三维建模方法研究[D]. 北京: 中国地质大学(北京), 2016.

    Fu Yongxian. Research on Data Pre-processing in Multi-beam Bathymetric and 3D Modeling of Seabed Terrain[D]. Beijing: China University of Geosciences, 2016.
    [12]
    Zhang F, Li X K, Zhang S. Research on Adaptive Trend Surface Filtering Algorithm for Multi-beam Sounding Data Based on K-D Tree[J]. E3S Web of Conferences, 2019, 131: 01028.
    [13]
    张志衡, 彭认灿, 黄文骞, 等. 考虑自然邻点影响域的多波束测深数据趋势面滤波改进算法[J]. 测绘学报, 2018, 47(1): 35-47.

    Zhang Zhiheng, Peng Rencan, Huang Wenqian, et al. An Improved Algorithm of Tendency Surface Filtering in Multi-beam Bathymetric Data Considering the Natural Neighboring Points Influence Field[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 35-47.
    [14]
    刘毅, 王磊, 王胜利, 等. 改进的布料模拟算法在多波束点云粗差剔除中的应用[J]. 科学技术与工程, 2021, 21(31): 13248-13253.

    Liu Yi, Wang Lei, Wang Shengli, et al. Application of Improved Cloth Simulation Filtering in Eliminating Gross Errors of Multibeam Point Clouds[J]. Science Technology and Engineering, 2021, 21(31): 13248-13253.
    [15]
    汪文琪, 李宗春, 付永健, 等. 一种多尺度自适应点云坡度滤波算法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 438-446.

    Wang Wenqi, Li Zongchun, Fu Yongjian, et al. A Multi-scale Adaptive Slope Filtering Algorithm for Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446.
    [16]
    吴军, 李伟, 彭智勇, 等. 融合形态学灰度重建与三角网分层加密的LiDAR点云滤波[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1298-1303.

    Wu Jun, Li Wei, Peng Zhiyong, et al. Integrating Morphological Grayscale Reconstruction and TIN Models for High-quality Filtering of Airborne LiDAR Points[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1298-1303.
    [17]
    李鹏程, 徐青, 邢帅, 等. 利用波形信息的加权曲面拟合LiDAR点云滤波[J]. 武汉大学学报(信息科学版), 2018, 43(3): 420-427.

    Li Pengcheng, Xu Qing, Xing Shuai, et al. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 420-427.
    [18]
    隋立春, 张熠斌, 张硕, 等. 基于渐进三角网的机载LiDAR点云数据滤波[J]. 武汉大学学报(信息科学版), 2011, 36(10): 1159-1163.

    Sui Lichun, Zhang Yibin, Zhang Shuo, et al. Filtering of Airborne LiDAR Point Cloud Data Based on Progressive TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1159-1163.
    [19]
    Yang A X, Wu Z Y, Yang F L, et al. Filtering of Airborne LiDAR Bathymetry Based on Bidirectional Cloth Simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 49-61.
    [20]
    Lu W L, Murphy K P, Little J J, et al. A Hybrid Conditional Random Field for Estimating the Underlying Ground Surface from Airborne LiDAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2913-2922.
    [21]
    Lin X G, Zhang J X. Segmentation-Based Filtering of Airborne LiDAR Point Clouds by Progressive Densification of Terrain Segments[J]. Remote Sensing, 2014, 6(2): 1294-1326.
    [22]
    杨琳, 翟瑞芳, 阳旭, 等. 结合超体素和区域增长的植物器官点云分割[J]. 计算机工程与应用, 2019, 55(16): 197-203.

    Yang Lin, Zhai Ruifang, Yang Xu, et al. Segmentation of Plant Organs Point Clouds Through Super Voxel-Based Region Growing Methodology[J]. Computer Engineering and Applications, 2019, 55(16): 197-203.
    [23]
    汤圣君, 张韵婕, 李晓明, 等. 超体素随机森林与LSTM神经网络联合优化的室内点云高精度分类方法[J]. 武汉大学学报(信息科学版), 2023, 48(4): 525-533.

    Tang Shengjun, Zhang Yunjie, Li Xiaoming, et al. A High-Precision Indoor Point Cloud Classification Method Jointly Optimized by Super Voxel Random Forest and LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 525-533.
    [24]
    王伟伟, 庞勇, 杜黎明, 等. 超体素约简和谱聚类结合的机载LiDAR点云单木分割[J]. 遥感学报, 2022, 26(8): 1650-1661.

    Wang Weiwei, Pang Yong, Du Liming, et al. Individual Tree Segmentation for Airborne LiDAR Point Cloud Data Using Spectral Clustering and Supervoxel-Based Algorithm[J]. National Remote Sensing Bulletin, 2022, 26(8): 1650-1661.
    [25]
    Yang J Q, Zhang Q, Xiao Y, et al. TOLDI: An Effective and Robust Approach for 3D Local Shape Description[J]. Pattern Recognition, 2017, 65: 175-187.
    [26]
    王乐洋, 温贵森. 相关观测PEIV模型的最小二乘方差分量估计[J]. 测绘地理信息, 2018, 43(1): 8-14.

    Wang Leyang, Wen Guisen. Least Square Variance Components Estimation of PEIV Model with Correlated Observations[J]. Journal of Geomatics, 2018, 43(1): 8-14.
    [27]
    王乐洋, 孙坚强. 总体最小二乘回归预测模型的方差分量估计[J]. 武汉大学学报(信息科学版), 2021, 46(2): 280-288.

    Wang Leyang, Sun Jianqiang. Variance Components Estimation for Total Least-Squares Regression Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 280-288.
    [28]
    苏贵, 杨根新, 李义宏. TLS法在GNSS高程曲面拟合中的应用研究[J]. 测绘与空间地理信息, 2022, 45(7): 88-90.

    Su Gui, Yang Genxin, Li Yihong. Application of TLS Method in GNSS Elevation Surface Fitting[J]. Geomatics & Spatial Information Technology, 2022, 45(7): 88-90.
    [29]
    吴云龙, 罗志才, 李辉, 等. 卫星重力梯度数据粗差探测方法的比较研究[J]. 大地测量与地球动力学, 2011, 31(1): 78-82.

    Wu Yunlong, Luo Zhicai, Li Hui, et al. Comparison of Outlier Detection Methods in Gravity Gradiometry[J]. Journal of Geodesy and Geodynamics, 2011, 31(1): 78-82.
    [30]
    李志林, 朱庆. 数字高程模型[M]. 武汉: 武汉大学出版社, 2000.

    Li Zhilin, Zhu Qing. Digital Elevation Model[M]. Wuhan: Wuhan University Press, 2000.
    [31]
    李天文, 刘学军, 汤国安. 地形复杂度对坡度坡向的影响[J]. 山地学报, 2004, 22(3): 272-277.

    Li Tianwen, Liu Xuejun, Tang Guoan. Influence of Terrain Complexity on Slope and Aspect[J]. Journal of Mountain Research, 2004, 22(3): 272-277.
    [32]
    陈嘉阳, 卜宪海, 陈殿称, 等. 顾及地形复杂度因子权重的多波束点云抽稀算法[J]. 山东科技大学学报(自然科学版), 2022, 41(5): 21-29.

    Chen Jiayang, Bu Xianhai, Chen Dianchen, et al. A Thinning Algorithm of Multibeam Point Cloud Considering Weight of Terrain Complexity Factor[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(5): 21-29.
    [33]
    张倩宁, 黄泽纯, 徐柱, 等. 一种自适应定权地形复杂度模型[J]. 山地学报, 2017, 35(2): 230-237.

    Zhang Qianning, Huang Zechun, Xu Zhu, et al. An Adaptive Weighting Terrain Complexity Model[J]. Mountain Research, 2017, 35(2): 230-237.
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return