Citation: | LI Bofeng, MIAO Weikai, CHEN Guang'e. Key Technologies and Challenges of Multi-frequency and Multi-GNSS High-Precision Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1769-1783. DOI: 10.13203/j.whugis20230309 |
High-precision global navigation satellite system(GNSS)positioning technology, as a hot spot in the field of satellite navigation, has expanded the in-depth development of the location-based service area, and has been widely used in smart cities, intelligent transportation, autonomous driving and other fields. First, this paper presents the current status and development of GNSS positioning technologies.Then, it explains the common basic theories such as integer ambiguity fixation, functional model and stochastic model fusion involved in multi-frequency multi-GNSS high-precision positioning, as well as the key techniques for improving GNSS positioning performance such as the non-model error processing, the cycle slip detection and data interruption repair. Based on the innovations of basic theories and key techniques, this paper introduces four new technologies for multi-frequency multi-GNSS high-precision positioning applications developed by Tongji University GNSS team in recent years. Finally, we remark the future development trend and challenges of GNSS-based high-precision positioning.
[1] |
杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605001.htm
Yang Yuanxi. Concepts of Comprehensive PNT and Related Key Technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201605001.htm
|
[2] |
Teunissen P, Montenbruck O. Springer Handbook of Global Navigation Satellite Systems[M]. Cham: Springer International Publishing, 2017.
|
[3] |
Leick A. GPS Satellite Surveying[M]. 3rd ed. New York: John Wiley, 2004.
|
[4] |
Hofmann-Wellenhof B, Lichtenegger H, Collins J. Global Positioning System: Theory and Practice[M]. 5th ed. New York: Springer Wien, 2001.
|
[5] |
Verhagen S. The GNSS Integer Ambiguities: Estimation and Validation[D]. Delft : Delft University of Technology, 2004.
|
[6] |
Teunissen P. Towards a Unified Theory of GPS Ambiguity Resolution[J]. Journal of Global Positioning Systems, 2003, 2(1): 1-12. doi: 10.5081/jgps.2.1.1
|
[7] |
Feng Y, Li B. Three Carrier Ambiguity Resolution: Generalised Problems, Models, Methods and Performance Analysis Using Semi-generated Triple Frequency GPS Data[C]//ION GNSS, Savannah, USA, 2008.
|
[8] |
Teunissen P. Integer Estimation in the Presence of Biases[J]. Journal of Geodesy, 2001, 75(7): 399-407.
|
[9] |
Li B, Shen Y, Feng Y. Fast GNSS Ambiguity Resolution as an Ill-posed Problem[J]. Journal of Geodesy, 2010, 84(11): 683-698. doi: 10.1007/s00190-010-0403-5
|
[10] |
Li B, Qin Y, Liu T. Geometry-based Cycle Slip and Data Gap Repair for Multi-GNSS and Multi-frequency Observations[J]. Journal of Geodesy, 2019, 93(3): 399-417. doi: 10.1007/s00190-018-1168-5
|
[11] |
杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807002.htm
Yang Yuanxi. Resilient PNT Concept Frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201807002.htm
|
[12] |
Shin E. Estimation Techniques for Low-Cost Inertial Navigation[D]. Calgary: University of Calgary, 2005.
|
[13] |
张治腾. 多频多系统GNSS长距离RTK理论与方法[D]. 上海: 同济大学, 2021.
Zhang Zhiteng. Multi-frequency and Multi-GNSS Long-Range RTK Theory and Methods[D]. Shanghai: Tongji University, 2021.
|
[14] |
Ge H, Li B, Jia S, et al. LEO Enhanced Global Navigation Satellite System (LeGNSS): Progress, Opportunities, and Challenges[J]. Geo⁃spatial Information Science, 2022, 25(1): 1-13.
|
[15] |
张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
Zhang Xiaohong, Ma Fujian. Review of the Development of LEO Navigation-Augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
|
[16] |
Rogers R. Applied Mathematics in Integrated Navigation Systems[M]. 3rd ed. Reston, VA, USA: AIAA, 2007.
|
[17] |
Bock Y, Abbot R, Counselman C, et al. Geodetic Accuracy of the Macrometer Model V-1000[J]. Bulletin Geodesique, 1984, 58(2): 211-221. doi: 10.1007/BF02520902
|
[18] |
Bock Y, Abbot R, Counselman C, et al. Three-dimensional Geodetic Control by Interferometry with GPS: Processing of GPS Phase Observables[C]// The 1st International Symposium on Precise Positioning with the Global Positioning System, Rockville, Maryland, 1985.
|
[19] |
Edwards S, Cross P, Barnes J, et al. A Methodology for Benchmarking Real-Time Kinematic GPS[J]. Survey Review, 1999, 35(273): 163-174. doi: 10.1179/sre.1999.35.273.163
|
[20] |
Han S. Carrier Phase-Based Long-Range GPS Kinematic Positioning[D]. Sydney, Australia : UNSW University, 1997.
|
[21] |
Wanninger L. Improved Ambiguity Resolution by Regional Differential Modelling of the Ionosphere[C]//The 8th International Technical Meeting of the Satellite Division of The Institute of Navigation, Palm, USA, 1995.
|
[22] |
高星伟. GPS/GLONASS网络RTK的算法研究与程序实现[D]. 武汉: 武汉大学, 2002.
Gao Xingwei. The Algorithmic Research of GPS/GLONASS Network RTK and Its Program Realization[D]. Wuhan: Wuhan University, 2002.
|
[23] |
Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research, 1989, 94(B8): 10187-10203. doi: 10.1029/JB094iB08p10187
|
[24] |
Trimble. Trimble - VRS[OL]. [2010-01-21]. http://www.trimble.com/vrs.shtml.
|
[25] |
Wübbena G, Bagge A, Seeber G, et al. Reducing Distance Dependent Errors for Real-Time Precise DGPS Applications by Establishing Reference Station Networks[C]//The 9th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1996), CityKansas, MO, 1996.
|
[26] |
Leica Geosystems. White Paper: GPS SpiderNET - Take It to the MAX[OL]. [2005-03-22]. http://www.leica-geosystems.com.
|
[27] |
Kouba J, Mireault Y, Lahaye F. IGS Orbit/Clock Combination and Evaluation[C]//International GPS Service for Geodynamics (IGS), California, USA, 1995.
|
[28] |
Zumberge J, Heflin M, Jefferson D, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research, 1997, 102(B3): 5005-5017. doi: 10.1029/96JB03860
|
[29] |
刘经南, 叶世榕. GPS非差相位精密单点定位技术探讨[J]. 武汉大学学报(信息科学版), 2002, 27(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200203001.htm
Liu Jingnan, Ye Shirong. GPS Precise Point Positioning Using Undifferenced Phase Observation[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200203001.htm
|
[30] |
Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4
|
[31] |
Laurichesse D, Mercier F, Berthias J, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Annual of Navigation, 2007, 56(2): 135-149.
|
[32] |
Collins P. Isolating and Estimating Undifferenced GPS Integer Ambiguities[C]//The 2008 National Technical Meeting of the Institute of Navigation, San Diego, USA, 2008.
|
[33] |
Geng J, Chen X, Pan Y, et al. A Modified Phase Clock/Bias Model to Improve PPP Ambiguity Resolution at Wuhan University[J]. Journal of Geodesy, 2019, 93(10): 2053-2067. doi: 10.1007/s00190-019-01301-6
|
[34] |
Wang S, Li B, Li X, et al. Performance Analysis of PPP Ambiguity Resolution with UPD Products Estimated from Different Scales of Reference Station Networks[J]. Advances in Space Research, 2018, 61(1): 385-401. doi: 10.1016/j.asr.2017.09.005
|
[35] |
姚宜斌, 彭文飞, 孔建, 等. 精密单点定位模糊度固定效果分析[J]. 武汉大学学报(信息科学版), 2013, 38(11): 1281-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201311006.htm
Yao Yibin, Peng Wenfei, Kong Jian, et al. Analysis of Ambiguity Fixing in Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1281-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201311006.htm
|
[36] |
Zhang X, Li X, Guo F. Satellite Clock Estimation at 1Hz for Real Time Kinematic PPP Applications[J]. GPS Solutions, 2011, 15(4): 315-324. doi: 10.1007/s10291-010-0191-7
|
[37] |
Li X, Ge M, Dai X, et al. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6): 607-635. doi: 10.1007/s00190-015-0802-8
|
[38] |
姚宜斌, 冯鑫滢, 彭文杰, 等. 基于CORS的区域大气增强产品对实时PPP的影响[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1739-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm
Yao Yibin, Feng Xinying, Peng Wenjie, et al. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm
|
[39] |
Teunissen P, Khodabandeh A. Review and Principles of PPP-RTK Methods[J]. Journal of Geodesy, 2015, 89(3): 217-240. doi: 10.1007/s00190-014-0771-3
|
[40] |
Wabbena G, Schmitz M, Bagge A. PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks[C]//The 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, Long Beach, USA, 2005.
|
[41] |
李博峰. 混合整数GNSS函数模型及随机模型参数估计理论与方法[D]. 上海: 同济大学, 2010.
Li Bofeng. Theory and Method of Parameter Estimation for Mixed Integer GNSS Stochastic and Function Models[D]. Shanghai: Tongji University, 2010.
|
[42] |
Teunissen P. An Optimality Property of the Integer Least-Squares Estimator[J]. Journal of Geodesy, 1999, 73(11): 587-593. doi: 10.1007/s001900050269
|
[43] |
Xu P. Voronoi Cells, Probabilistic Bounds and Hypothesis Testing in Mixed Integer Linear Models[J]. IEEE Transactions on Information Theory, 2006, 52(7): 3122-3138. doi: 10.1109/TIT.2006.876356
|
[44] |
Teunissen P. The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1): 65-82.
|
[45] |
Chang X, Yang X, Zhou T. MLAMBDA: A Modified LAMBDA Algorithm for Integer Least-Squares Estimation[J]. Journal of Geodesy, 2005, 79(9): 552-565. doi: 10.1007/s00190-005-0004-x
|
[46] |
Xu P. Random Simulation and GPS Decorrelation[J]. Journal of Geodesy, 2001, 75(7): 408-423.
|
[47] |
Teunissen P. Integer Aperture GNSS Ambiguity Resolution[J]. Artificial Satellites, 2003, 38(3): 79-88.
|
[48] |
Teunissen P. GNSS Ambiguity Resolution with Optimally Controlled Failure-Rate[J]. Artificial Satellites, 2005, 40(4): 219-227.
|
[49] |
Teunissen P. Theory of Integer Equivariant Estimation with Application to GNSS[J]. Journal of Geodesy, 2003, 77(7): 402-410.
|
[50] |
Teunissen P. Best Integer Equivariant Estimation for Elliptically Contoured Distributions[J]. Journal of Geodesy, 2020, 94(9): 82. doi: 10.1007/s00190-020-01407-2
|
[51] |
Shen Y, Li B. Regularized Solution to Fast GPS Ambiguity Resolution[J]. Journal of Survey Engineering, 2007, 133(4): 168-172. doi: 10.1061/(ASCE)0733-9453(2007)133:4(168)
|
[52] |
李博峰, 沈云中. P范分布混合整数模型参数估计理论[J]. 测绘学报, 2010, 39(2): 141-145.
Li Bofeng, Shen Yunzhong. Maximum Likelihood Estimation in Mixed Integer Linear Model with p-norm Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2): 141-145.
|
[53] |
Li B, Zhang Z, Miao W, et al. Improved Precise Positioning with BDS-3 Quad-Frequency Signals[J]. Satellite Navigation, 2020, 1(1): 1-10. doi: 10.1186/s43020-019-0006-0
|
[54] |
Feng Y, Li B. A Benefit of Multiple Carrier GNSS Signals: Regional Scale Network-Based RTK with Doubled Inter-Station Distances[J]. Journal of Spatial Science, 2008, 53(2): 135-147. doi: 10.1080/14498596.2008.9635154
|
[55] |
Li B. Review of Triple-Frequency GNSS: Ambiguity Resolution, Benefits and Challenges[J]. The Journal of Global Positioning Systems, 2018, 16(1): 1-15. doi: 10.1186/s41445-018-0010-y
|
[56] |
Li B, Feng Y, Shen Y. Three Carrier Ambiguity Resolution: Distance-Independent Performance Demonstrated Using Semi-Generated Triple Frequency GPS Signals[J]. GPS Solutions, 2010, 14(2): 177-184. doi: 10.1007/s10291-009-0131-6
|
[57] |
Li B, Feng Y, Gao W, et al. Real-Time Kinematic Positioning over Long Baselines Using Triple-Frequency BeiDou Signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3254-3269. doi: 10.1109/TAES.2015.140643
|
[58] |
Feng Y. GNSS Three Carrier Ambiguity Resolution Using Ionosphere-Reduced Virtual Signals[J]. Journal of Geodesy, 2008, 82(12): 847-862. doi: 10.1007/s00190-008-0209-x
|
[59] |
Parkins A. Increasing GNSS RTK Availability with a New Single-epoch Batch Partial Ambiguity Resolution Algorithm[J]. GPS Solutions, 2011, 15(4): 391-402. doi: 10.1007/s10291-010-0198-0
|
[60] |
Wang J, Feng Y. Reliability of Partial Ambiguity Fixing with Multiple GNSS Constellations[J]. Journal of Geodesy, 2013, 87(1): 1-14. doi: 10.1007/s00190-012-0573-4
|
[61] |
Teunissen P, Odolinski R, Odijk D. Instantaneous BeiDou+GPS RTK Positioning with High Cut-off Elevation Angles[J]. Journal of Geodesy, 2014, 88(4): 335-350. doi: 10.1007/s00190-013-0686-4
|
[62] |
Li B, Shen Y, Feng Y, et al. GNSS Ambiguity Resolution with Controllable Failure Rate for Long Baseline Network RTK[J]. Journal of Geodesy, 2014, 88(2): 99-112. doi: 10.1007/s00190-013-0670-z
|
[63] |
李博峰, 沈云中, 张兴福. 纳伪概率可控的四舍五入法及其在RTK模糊度固定中的应用[J]. 测绘学报, 2012, 41(4): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204004.htm
Li Bofeng, Shen Yunzhong, Zhang Xingfu. Error Probability Controllable Integer Rounding Method and Its Application to RTK Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204004.htm
|
[64] |
Li B, Lou L, Shen Y. GNSS Elevation-Dependent Stochastic Modeling and Its Impacts on the Statistic Testing[J]. Journal of Surveying Engineering, 2016, 142(2): 04015012. doi: 10.1061/(ASCE)SU.1943-5428.0000156
|
[65] |
Li B, Zhang L, Verhagen S. Impacts of BeiDou Stochastic Model on Reliability: Overall Test, w-test and Minimal Detectable Bias[J]. GPS Solutions, 2017, 21(3): 1095-1112. doi: 10.1007/s10291-016-0596-z
|
[66] |
Tian Y, Ge M, Neitzel F, et al. Multi-Dimensional Particle Filter-Based Estimation of Inter-System Phase Biases for Multi-GNSS Real-Time Integer Ambiguity Resolution [J]. Journal of Geodesy, 2019, 93: 1073-1087. doi: 10.1007/s00190-018-01226-6
|
[67] |
Zhang B, Liu T, Yuan Y. GPS Receiver Phase Biases Estimable in PPP-RTK Networks: Dynamic Characterization and Impact Analysis[J]. Journal of Geodesy, 2018, 92(6): 659-674. doi: 10.1007/s00190-017-1085-z
|
[68] |
Geng J, Wen Q, Zhang Q, et al. GNSS Observable-specific Phase Biases for All-Frequency PPP Ambiguity Resolution[J]. Journal of Geodesy, 2022, 96(2): 11. doi: 10.1007/s00190-022-01602-3
|
[69] |
Zang N, Li B, Nie L, et al. Inter-System and Inter-Frequency Code Biases: Simultaneous Estimation, Daily Stability and Applications in Multi-GNSS Single-Frequency Precise Point Positioning [J]. GPS Solutions, 2019, 24(1): 18.
|
[70] |
Li B, Zang N, Ge H, et al. Single-Frequency PPP Models: Analytical and Numerical Comparison[J]. Journal of Geodesy, 2019, 93(12): 2499-2514. doi: 10.1007/s00190-019-01311-4
|
[71] |
Teunissen P, Amiri-Simkooei A. Least-Squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2): 65-82. doi: 10.1007/s00190-007-0157-x
|
[72] |
李博峰, 沈云中, 楼立志. 基于等效残差的方差-协方差分量估计[J]. 测绘学报, 2010, 39(4): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101005.htm
Li Bofeng, Shen Yunzhong, Lou Lizhi. Variance-Covariance Component Estimation Based on the Equivalent Residuals[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101005.htm
|
[73] |
李博峰, 沈云中. 基于等效残差积探测粗差的方差-协方差分量估计[J]. 测绘学报, 2011, 40(1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101005.htm
Li Bofeng, Shen Yunzhong. Equivalent Residual Product Based Outlier Detection for Variance and Covariance Component Estimation[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201101005.htm
|
[74] |
Li B, Shen Y, Lou L. Efficient Estimation of Variance and Covariance Components: A Case Study for GPS Stochastic Model Evaluation[J]. IEEE Transaction on Geosciences and Remote Sensing, 2011, 49(1): 203-210. doi: 10.1109/TGRS.2010.2054100
|
[75] |
Li B, Shen Y, Xu P. Assessment of Stochastic Models for GPS Measurements with Different Types of Receivers[J]. Chinese Science Bulletin, 2008, 53(20): 3219-3225. doi: 10.1007/s11434-008-0293-6
|
[76] |
Li B. Stochastic Modeling of Triple-Frequency BeiDou Signals: Estimation, Assessment and Impact Analysis[J]. Journal of Geodesy, 2016, 90(7): 593-610. doi: 10.1007/s00190-016-0896-7
|
[77] |
Li B, Zhang Z, Shen Y, et al. A Procedure for the Significance Testing of Unmodeled Errors in GNSS Observations[J]. Journal of Geodesy, 2018, 92(10): 1171-1186. doi: 10.1007/s00190-018-1111-9
|
[78] |
Zhang Z, Li B. Unmodeled Error Mitigation for Single-Frequency Multi-GNSS Precise Positioning Based on Multi-epoch Partial Parameterization[J]. Measurement Science and Technology, 2020, 31(2): 025008.
|
[79] |
Zhang Z, Li B, Shen Y. Efficient Approximation to a Fully Populated Variance-Covariance Matrix for RTK Positioning[J]. Journal of Surveying Engineering, 2018, 144(4): 04018005.
|
[80] |
Dach R, Hugentobler U, Fridez P, et al. Bernese GPS Software Version 5.0[R]. Bern: University of Bern, 2007.
|
[81] |
Li B, Liu T, Nie L, et al. Single-Frequency GNSS Cycle Slip Estimation with Positional Polynomial Constraint[J]. Journal of Geodesy, 2019, 93(9): 1781-1803.
|
[82] |
Zhang Z, Li B, Gao Y, et al. Asynchronous and Time-Differenced RTK for Ocean Applications Using the BeiDou Short Message Service[J]. Journal of Geodesy, 2023, 97(1): 7.
|
[83] |
Dixon, K. StarFire: A Global SBAS for Sub-Decimeter Precise Point Positioning[C]//The 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, USA, 2006.
|
[84] |
Li B, Zhang Z, Zang N, et al. High-Precision GNSS Ocean Positioning with BeiDou Short-Message Communication[J]. Journal of Geodesy, 2019, 93(2): 125-139.
|
[85] |
Julien O, Alves P, Cannon M E, et al. A Tightly Coupled GPS/Galileo Integration for Improved Ambiguity Resolution[C]//Proceedings of ENC-GNSS 2003, Graz, Austria, 2003.
|
[86] |
Odijk D, Teunissen P, Huisman L. First Results of Mixed GPS+GIOVE Single-Frequency RTK in Australia[J]. Journal of Spatial Science, 2012, 57(1): 3-18.
|
[87] |
Odijk D, Teunissen P. Estimation of Differential Inter-System Biases Between the Overlapping Frequencies of GPS, Galileo, BeiDou and QZSS[C]//The 4th International Colloquium Scientific and Fundamental Aspects of the Galileo Program, Prague, Czech Republic, 2013.
|
[88] |
Chen G, Li B, Zhang Z, et al. Integer Ambiguity Resolution and Precise Positioning for Tight Integration of BDS-3, GPS, Galileo, and QZSS Overlapping Frequencies Signals[J]. GPS Solutions, 2021, 26(1): 26.
|
[89] |
Geng T, Li Z, Xie X, et al. Real-Time Ocean Precise Point Positioning with BDS-3 Service Signal PPP-B2b[J]. Measurement, 2022, 203: 111911.
|
[90] |
Ge H, Li B, Ge M, et al. Improving Low Earth Orbit (LEO) Prediction with Accelerometer Data[J]. Remote Sensing, 2020, 12(10): 1599.
|
[91] |
Ge H, Wu T, Li B. Characteristics Analysis and Prediction of Low Earth Orbit (LEO) Satellite Clock Corrections by Using Least-squares Harmonic Estimation[J]. GPS Solutions, 2022, 27(1): 38.
|
[92] |
Zangenehnejad F, Gao Y. GNSS Smartphones Positioning: Advances, Challenges, Opportunities, and Future Perspectives[J]. Satellite Navigation, 2021, 2(1): 24.
|
[93] |
Humphreys T, Murrian M, Van Diggelen F, et al. On the Feasibility of cm-accurate Positioning via a Smartphone's Antenna and GNSS Chip[C]//2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, USA, 2016.
|
[94] |
Zhang X, Tao X, Zhu F, et al. Quality Assessment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach[J]. GPS Solutions, 2018, 22(3): 70.
|
[95] |
张小红, 陶贤露, 王颖喆, 等. 城市场景智能手机GNSS/MEMS融合车载高精度定位[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1740-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202210020.htm
Zhang Xiaohong, Tao Xianlu, Wang Yingzhe, et al. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1740-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202210020.htm
|
[96] |
张小红, 张元泰, 朱锋. 城市复杂场景下GNSS定位的因子图优化方法及其抗差性能分析[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1050-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202307004.htm
Zhang Xiaohong, Zhang Yuantai, Zhu Feng. Factor Graph Optimization for Urban Environment GNSS Positioning and Robust Performance Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1050-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202307004.htm
|
[97] |
Miao W, Li B, Gao Y. The Superiority of Multi-GNSS L5/E5a/B2a Frequency Signals in Smartphones: Stochastic Modeling, Ambiguity Resolution and RTK Positioning[J]. IEEE Internet of Things Journal, 2023, 10(8): 7315-7326.
|
[98] |
Li B, Miao W, Chen G, et al. Ambiguity Resolution for Smartphone GNSS Precise Positioning: Effect Factors and Performance[J]. Journal of Geodesy, 2022, 96(9): 63.
|
[99] |
Engel J, Koltun V, Cremers D. Direct Sparse Odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
|
[100] |
Latif Y, Cadena C, Neira J. Robust Loop Closing over Time for Pose Graph Slam [J]. International Journal of Robotics Research, 2013, 32(14): 1611-1626.
|
[101] |
Liu T, Li B, Yang L. Phase Center Offset Calibration and Multipoint Time Latency Determination for UWB Location[J]. IEEE Internet of Things Journal, 2022, 9(18): 17536-17550.
|
[1] | HE Chaoyang, XU Qiang, JU Nengpan, XIE Mingli. Optimization of Model Scheduling Algorithm in Real-Time Monitoring and Early Warning of Landslide[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 970-982. DOI: 10.13203/j.whugis20200314 |
[2] | CAO Zhipeng, JIANG Liangcun, HUANG Qiujun, YUE Peng, SHANGGUAN Boyi, LUO Aling, LIANG Zheheng. A Dynamic Scheduling Method of Logistics Vehicles Based on Ruin and Recreate Algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 755-765, 776. DOI: 10.13203/j.whugis20200017 |
[3] | ZHU Qing, HAN Huipeng, YU Jie, DU Zhiqiang, ZHANG Junxiao, WU Chen, SHEN Fuqiang. Multi-objective Optimization Scheduling Method for UAV Resources in Emergency Surveying and Mapping[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1608-1615. DOI: 10.13203/j.whugis20130000 |
[4] | ZHANG Dengyi, GUO Lei, WANG Qian, ZOU Hua. An Improved Single-orbit Scheduling Method for Agile ImagingSatellite Towards Area Target[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 901-905. DOI: 10.13203/j.whugis20130233 |
[5] | CHEN Di, ZHU Xinyan, ZHOU Chunhui, SU Kehua. Distributed Spatial Query Processing and Parallel Schedule Based on Zonal Fragmentation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 892-896. |
[6] | YANG Chuncheng, XIE Peng, HE Liesong, ZHOU Xiaodong. Data Scheduling for Map Data Reading[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 166-169. |
[7] | LIN Aiwen, NIU Jiqiang, HU Lifeng. Evaluation of Natural Resources with Grey Clustering Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 164-167. |
[8] | XIE Hongyu, LIU Nianfeng, YAO Ruizhen, SONG Weiwei. Resource Yield Method on Ecological Footprint Analysis[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 1018-1021. |
[9] | YU Dandan, HE Yanxiang, TU Guoqing. A Market-based Hierarchical Model for Resource Management Architecture in Spatial Information Grid[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 837-840. |
[10] | Li Mingshan, Lu Zhiyan. The Generalized Backtracking Method & the Optimum Task Scheduling of the Parallel Computer System[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 90-95. |
1. |
谭冰,高春春,陆洋,卢鹏,李志军. 南极威德尔海西北区域冬季海冰龙骨形态分析. 武汉大学学报(信息科学版). 2021(09): 1386-1394 .
![]() | |
2. |
陈俊霖,周春霞,赵秋阳. 2003—2018年Byrd冰川流域冰下湖活动及水文联系——多源卫星测高数据监测结果分析. 测绘学报. 2020(05): 547-556 .
![]() |