WANG Le-yang, LI Zhi-qiang, HU Fang-fang, HAN Shu-hao, PANG Ming. Sieve-Block Bootstrap sampling method for precision estimation of the time series AR model considering random errors of design matrix[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230288
Citation: WANG Le-yang, LI Zhi-qiang, HU Fang-fang, HAN Shu-hao, PANG Ming. Sieve-Block Bootstrap sampling method for precision estimation of the time series AR model considering random errors of design matrix[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230288

Sieve-Block Bootstrap sampling method for precision estimation of the time series AR model considering random errors of design matrix

More Information
  • Received Date: November 12, 2023
  • Available Online: December 14, 2023
  • Objectives: Since the traditional least square method cannot take into account the random errors of design matrix when solving the time series AR (Auto-Regressive) model. In addition, it is difficult for the existing iterative method of AR model to use the propagation of variance and covariance to give the accurate precision estimation formula. Methods: This paper introduces the Block Bootstrap resampling method into the precision estimation research of the AR model, and on the basis of it, the principle of the Sieve Bootstrap is introduced. This paper defines the Sieve-Block Bootstrap sampling method for precision estimation of the AR model considering random errors of design matrix. According to the different blocking criteria and sampling strategies, this paper gives four detailed resampling procedures. Results:The real case of BeiDou Global Navigation Satellite System satellite precision clock offsets shows that the root mean square (RMS)of the Sieve-Moving Block Bootstrap method, Sieve-Nonoverlapping Block Bootstrap method, Sieve-Circular Block Bootstrap method and Sieve-Stationary Block are given in this paper compared with the RMS of total least squares (TLS)method, decreased by 70.25%, 78.65%, 70.89% and 79.24%, respectively. Conclusions:The experimental research and analysis show that the Sieve-Block Bootstrap sampling method can obtain more reliable autoregressive coefficient standard deviations than the least square method and the classical AR model iterative method, and it has stronger applicability.
  • Related Articles

    [1]WANG Li, LI Yi, SHU Bao, TIAN Yunqing, WANG Bingjie. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 678-686. DOI: 10.13203/j.whugis20210567
    [2]TAN Han, WU Jiaqi. Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1460-1469. DOI: 10.13203/j.whugis20200385
    [3]YANG Yufei, YANG Yuanxi, XU Junyi, XU Yangyin, ZHAO Ang. Navigation Satellites Orbit Determination with the Enhancement of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 46-52. DOI: 10.13203/j.whugis20180215
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]LEI Yu, ZHAO Danning, CAI Hongbing. Prediction of Navigation Satellite Clock Offset by Adaptive Extreme Learning Machine[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 664-668, 718. DOI: 10.13203/j.whugis20150252
    [6]LI Xiaojie, PAN Ling, GUO Rui, SU Ranran, ZHU Lingfeng, DONG Enqiang, TANG Guifen. A Method of Improving Orbit Prediction for Navigation Satellite Based on Adjusting Compensable Wave[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1061-1067. DOI: 10.13203/j.whugis20150078
    [7]wang yupu, lv zhiping,  cui yang,  lv hao,  li linyang. predicting navigation  satellite clock bias using agenetic wavelet neural network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 809-814.
    [8]HAN Baomin. Densification Methods of GPS Satellite Clock Errors and Their Impact on Orbit Determination Precision of LEOs[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1075-1078.
    [9]GUO Jinlai, ZHAO Qile, GUO Daoyu. Reducing the Influence of Gravity Model Error on Precise Orbit Determination of Low Earth Orbit Satellites[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 293-296.
    [10]LIANG Yitong, HU Jianglin. Application of Neural Network Technique to Classification of NOAA Satellite Images[J]. Geomatics and Information Science of Wuhan University, 2000, 25(2): 148-152.

Catalog

    Article views (127) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return