YANG Fan, LIU Jing-bin, GONG Xiao-dong, HUANG Ge-ge, LIU De-long, MAO Jing-feng. Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230241
Citation: YANG Fan, LIU Jing-bin, GONG Xiao-dong, HUANG Ge-ge, LIU De-long, MAO Jing-feng. Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230241

Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting

More Information
  • Received Date: October 30, 2023
  • Available Online: December 14, 2023
  • Objectives: The location method based on Received Signal Strength Indication (RSSI) fingerprint requires building a fingerprint database of the location area in the offline stage. The traditional static fingerprint collection method is time-consuming and labor-intensive to establish and update the fingerprint database, and the location consistency is easily affected by the terminal difference (such as the difference of the received signal caused by the different hardware of the fingerprint collection phone and the location phone), which hinders the large-scale application of this method. Methods: To address these problems, this paper collects RSSI fingerprints during mobile walking and builds a corresponding mobile collection fingerprint database, constructs feature vectors according to the characteristics of mobile collection fingerprints, proposes sparse feature representation of mobile collection fingerprints, and establishes a fingerprint matching indoor location model based on adaptive compressed sensing algorithm. Results: The experimental results show that the fingerprint collection efficiency is improved by 90.83%, the average location error is 1.96 meters, the root mean square error is 2.75 meters, and the location consistency difference error is improved by 32.67% on average. Conclusions: The method proposed in this paper outperforms the existing algorithms in terms of fingerprint collection efficiency, location accuracy and location consistency of different phones.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return