Citation: | WANG Hao, NIU Quanfu, LIU Bo, LEI Jiaojiao, WANG Gang, ZHANG Ruizhen. Spatial Distribution Prediction of Flash Flood Disaster in Longnan City Based on Particle Swarm Algorithm Combined with MaxEnt Model[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1444-1455. DOI: 10.13203/j.whugis20230219 |
Flash floods are natural disasters caused by sudden rise in water levels in mountainous rivers, which are characterized by instantaneity and great destructiveness. In recent years, the frequent occurrence of flash floods in Longnan city, Gansu province, has posed a serious threat to the safety of local people's lives and property, thus it is urgent to carry out a risk assessment of flash floods in this region.
This study takes Longnan city as the study area, and utilizes the MaxEnt model combining with the particle swarm algorithm to evaluate the vulnerability of study area based on 834 flash flood hazard points investigated and 32 disaster-causing factors. It also predicts the spatial pattern changes and potential mass migration trends of the future flash flood vulnerability areas based on three periods of climate data from the current period (2021—2040) and the future period (2041—2060, 2061—2080, 2081—2100).
The area under receiver operating characteristic curve of the results of the study in each period is above 0.85, which indicates that the precision of the results of the method is good. The main cause factors in this study area are driest month precipitation, monthly mean diurnal temperature difference, coefficient of variation of precipitation, warmest month maximum temperature, land use, distance from the river, soil texture, profile curvature, elevation, and topographic relief. The flash flood-prone areas in the study area varies in different periods, but are mainly distributed in Wudu District, Wen County and Tanchang County, and the simulation results for the three future periods (2041—2060, 2061—2080, 2081—2100) reflected a decreasing trend compared with the current period (2021—2040).
[1] |
梁冀雨, 刘曙光, 周正正, 等. 考虑山洪灾害影响的贝叶斯径流模拟方法[J]. 同济大学学报(自然科学版), 2022, 50(4): 545-554.
Liang Jiyu, Liu Shuguang, Zhou Zhengzheng, et al. A Bayesian Runoff Simulation Method Considering the Influence of Flash Flood Disaster[J]. Journal of Tongji University (Natural Science), 2022, 50(4): 545-554.
|
[2] |
李斌, 燕琴, 张丽, 等. 长江中游洪涝灾害特征的MODIS时序监测与分析[J]. 武汉大学学报(信息科学版), 2013, 38(7): 789-793.
Li Bin, Yan Qin, Zhang Li, et al. Flood Monitoring and Analysis over the Middle Reaches of Yangtze River Basin with MODIS Time-Series Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 789-793.
|
[3] |
张行南, 罗健, 陈雷, 等. 中国洪水灾害危险程度区划[J]. 水利学报, 2000, 31(3): 1-7.
Zhang Xingnan, Luo Jian, Chen Lei, et al. Zoning of Chinese Flood Hazard Risk[J]. Journal of Hydraulic Engineering, 2000, 31(3): 1-7.
|
[4] |
杜志强, 李钰, 张叶廷, 等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1344-1355.
Du Zhiqiang, Li Yu, Zhang Yeting, et al. Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355.
|
[5] |
熊木齐, 孟兴民, 庆丰, 等. 甘肃省陇南市白龙江流域泥石流灾害事件与降水特征的关系[J]. 兰州大学学报(自然科学版), 2016, 52(3): 295-300.
Xiong Muqi, Meng Xingmin, Feng Qing, et al. Relationship Between Debris Flow Activities and Precipitation Characteristics in Bailong River Basin of Longnan Region, Gansu Province[J]. Journal of Lanzhou University (Natural Sciences), 2016, 52(3): 295-300.
|
[6] |
党国锋, 纪树志. 基于GIS的秦巴山区土地生态敏感性评价: 以陇南山区为例[J]. 中国农学通报, 2017, 33(7): 118-127.
Dang Guofeng, Ji Shuzhi. Ecological Sensitivity Evaluation Based on GIS in Qinba Mountainous Area: A Case Study of Longnan Mountainous Area[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 118-127.
|
[7] |
牛全福, 冯尊斌, 张映雪, 等. 基于GIS的兰州地区滑坡灾害孕灾环境敏感性评价[J]. 灾害学, 2017, 32(3): 29-35.
Niu Quanfu, Feng Zunbin, Zhang Yingxue, et al. Susceptibility Assessment of Disaster Environment for Landslide Hazard Based on GIS in Lanzhou Area[J]. Journal of Catastrophology, 2017, 32(3): 29-35.
|
[8] |
江锦成. 面向重大突发灾害事故的应急疏散研究综述[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1498-1518.
Jiang Jincheng. A Review on Emergency Evacuation Methods for Major Sudden Disasters and Accidents[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1498-1518.
|
[9] |
Tsai H Y, Tsai C, Chang W N. Slope Unit-Based Approach for Assessing Regional Seismic Landslide Displacement for Deep and Shallow Failure[J]. Engineering Geology, 2019, 248:124-139.
|
[10] |
庞栋栋, 刘刚, 何敬, 等. 基于层次分析法的甘肃省地质灾害风险评估分析[J]. 国土资源信息化, 2021(6): 41-47.
Pang Dongdong, Liu Gang, He Jing, et al. Analysis of Geological Hazard Risk Assessment in Gansu Province Based on Analytic Hierarchy Process[J]. Land and Resources Informatization, 2021(6): 41-47.
|
[11] |
Saini S S, Kaushik S P, Jangra R. Flood-Risk Assessment in Urban Environment by Geospatial Approach: A Case Study of Ambala City, India[J]. Applied Geomatics, 2016, 8(3): 163-190.
|
[12] |
贾琳, 高源, 臧新伟, 等. 网络大数据背景下生态环境次生地质灾害风险评估方法研究[J]. 环境科学与管理, 2021, 46(10): 190-194.
Jia Lin, Gao Yuan, Zang Xinwei, et al. Risk Assessment of Ecological Secondary Geological Disasters Under Background of Big Data[J]. Environmental Science and Management, 2021, 46(10): 190-194.
|
[13] |
姬怡微, 李成, 高帅, 等. 陕西省韩城市地质灾害风险评估[J]. 灾害学, 2018, 33(3): 194-200.
Ji Yiwei, Li Cheng, Gao Shuai, et al. Risk Assessment of Geological Hazards of Hancheng City in Shaanxi Province[J]. Journal of Catastrophology, 2018, 33(3): 194-200.
|
[14] |
Park K, Lee M H. The Development and Application of the Urban Flood Risk Assessment Model for Reflecting Upon Urban Planning Elements[J]. Water, 2019, 11(5): 920.
|
[15] |
周超, 常鸣, 徐璐, 等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1782-1791.
Zhou Chao, Chang Ming, Xu Lu, et al. Risk Assessment of Typical Urban Mine Geological Disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1782-1791.
|
[16] |
史少斌. 基于叠加赋权与信息量模型的地质灾害风险评估: 以宁夏隆德县为例[D]. 西安: 长安大学, 2022.
Shi Shaobin. Geological Hazard Risk Assessment Based on Superposition Weighting and Information Model [D].Xi’an: Chang’an University, 2022.
|
[17] |
徐奎, 潘昊, 宾零陵, 等. 基于强化学习的海南岛山洪灾害易发性评估[J]. 水资源保护, 2023, 39(2): 95-100.
Xu Kui, Pan Hao, Lingling Bin, et al. Evaluation of Mountain Torrent Disaster Vulnerability in Hainan Island Based on Reinforcement Learning[J]. Water Resources Protection, 2023, 39(2): 95-100.
|
[18] |
赵龙, 桑国庆, 武玮, 等. 基于随机森林回归算法的山洪灾害临界雨量预估模型[J]. 济南大学学报(自然科学版), 2022, 36(4): 404-411.
Zhao Long, Sang Guoqing, Wu Wei, et al. Critical Rainfall Prediction Model for Mountain Torrent Disaster Based on Random Forest Regression Algorithm[J]. Journal of University of Jinan (Science and Technology), 2022, 36(4): 404-411.
|
[19] |
Zhao G, Pang B, Xu Z X, et al. Mapping Flood Susceptibility in Mountainous Areas on a National Scale in China[J]. The Science of the Total Environment, 2018, 615: 1133-1142.
|
[20] |
Lee S M, Kim J C, Jung H S, et al. Spatial Prediction of Flood Susceptibility Using Random-Forest and Boosted-Tree Models in Seoul Metropolitan City, Korea[J]. Geomatics, Natural Hazards and Risk, 2017, 8: 1185-1203.
|
[21] |
周超, 方秀琴, 吴小君, 等. 基于三种机器学习算法的山洪灾害风险评价[J]. 地球信息科学学报, 2019, 21(11): 1679-1688.
Zhou Chao, Fang Xiuqin, Wu Xiaojun, et al. Risk Assessment of Mountain Torrents Based on Three Machine Learning Algorithms[J]. Journal of Geo-Information Science, 2019, 21(11): 1679-1688.
|
[22] |
何珮婷, 刘丹媛, 卢思言, 等. 基于最大熵模型的深圳市内涝影响因素分析及内涝风险评估[J]. 地理科学进展, 2022, 41(10): 1868-1881.
He Peiting, Liu Danyuan, Lu Siyan, et al. Influencing Factors of Waterlogging and Waterlogging Risks in Shenzhen City Based on MaxEnt[J]. Progress in Geography, 2022, 41(10): 1868-1881.
|
[23] |
姚政宇, 韩其飞, 林彬. 基于最大熵模型的新疆主要有毒杂草分布区预测[J]. 生态学报, 2023, 43(12): 5096-5109.
Yao Zhengyu, Han Qifei, Lin Bin. Prediction of Distribution Area of Main Noxious and Miscellaneous Weeds in Xinjiang Based on MaxEnt Model[J]. Acta Ecologica Sinica, 2023, 43(12): 5096-5109.
|
[24] |
欧阳泽怡, 李志辉, 欧阳硕龙, 等. 基于Maxent和ArcGIS的赤皮青冈在中国的潜在适生区预测[J]. 中南林业科技大学学报, 2023, 43(2): 19-26.
Ouyang Zeyi, Li Zhihui, Ouyang Shuolong, et al. Prediction of the Potential Distribution of Cyclobalanopsis Gilva in China Based on the Maxent and ArcGIS Model[J]. Journal of Central South University of Forestry & Technology, 2023, 43(2): 19-26.
|
[25] |
万洋, 郭捷, 马凤山, 等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88-95.
Wan Yang, Guo Jie, Ma Fengshan, et al. Landslide Susceptibility Assessment Based on MaxEnt Model of Along Sino-Nepal Traffic Corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88-95.
|
[26] |
王晓帆, 段雨萱, 金露露, 等. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化[J]. 生态学报, 2023, 43(16): 6590-6604.
Wang Xiaofan, Duan Yuxuan, Jin Lulu, et al. Prediction of Historical, Present and Future Distribution of Quercus Sect. Heterobalanus Based on the Optimized MaxEnt Model in China[J]. Acta Ecologica Sinica, 2023, 43(16): 6590-6604.
|
[27] |
陈炳煌, 缪希仁, 江灏, 等. 融合粒子群与极限学习机的输电杆塔灾害分类方法[J]. 郑州大学学报(工学版), 2021, 42(4): 77-83.
Chen Binghuang, Miao Xiren, Jiang Hao, et al. A Method for Disaster Status Classification of Transmission Line Towers by Integrating Particle Swarm Optimization and Extreme Learning Machine[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(4): 77-83.
|
[28] |
黄文鑫, 吴军, 郭子辉, 等. 台风灾害下电网韧性评估及差异化规划[J]. 电力系统自动化, 2023, 47(5): 84-91.
Huang Wenxin, Wu Jun, Guo Zihui, et al. Power Grid Resilience Assessment and Differentiated Planning Against Typhoon Disasters[J]. Automation of Electric Power Systems, 2023, 47(5): 84-91.
|
[29] |
牛全福, 熊超, 雷姣姣, 等. 基于FFPI模型的甘肃陇南山区山洪灾害风险评价[J]. 自然灾害学报, 2023, 32(4): 36-47.
Niu Quanfu, Xiong Chao, Lei Jiaojiao, et al. Risk Assessment of Flash Flood Disasters in Longnan Mountain Area of Gansu Province Based on FFPI Model[J]. Journal of Natural Disasters, 2023, 32(4): 36-47.
|
[30] |
李伯新, 姜超, 孙建新. CMIP6模式对中国西南部地区植被碳利用率模拟能力综合评估[J]. 植物生态学报, 2023, 47(9): 1211-1224.
Li Boxin, Jiang Chao, Sun Jianxin. Comprehensive Assessment of Vegetation Carbon Use Efficiency in Southwestern China Simulated by CMIP6 Models[J]. Chinese Journal of Plant Ecology, 2023, 47(9): 1211-1224.
|
[31] |
王玉, 张万昌, 李旺平, 等. 耦合最大熵模型的离散粒子群水体提取[J]. 河南科学, 2020, 38(4): 538-545.
Wang Yu, Zhang Wanchang, Li Wangping, et al. Coupling Discrete Particle Swarm Optimization Algorithm with Maximum Entropy Model for Water Extraction from Remote Sensing Image[J]. Henan Science, 2020, 38(4): 538-545.
|
[32] |
刘明明, 刘丹丹, 芦星, 等. 基于MaxEnt模型的新疆地区钝缘蜱适生区分布研究[J]. 中国媒介生物学及控制杂志, 2023, 34(5): 671-678.
Liu Mingming, Liu Dandan, Lu Xing, et al. MaxEnt Model-Based Analysis of Distribution of Suitable Habitats of Ornithodoros Ticks in Xinjiang Uygur Autonomous Region, China[J]. Chinese Journal of Vector Biology and Control, 2023, 34(5): 671-678.
|
[33] |
曹守涛, 李军, 孙帅帅, 等. 基于MaxEnt模型的巴西烟草全球适生区预测研究[J]. 云南农业大学学报(自然科学), 2023, 38(3): 439-445.
Cao Shoutao, Li Jun, Sun Shuaishuai, et al. Prediction Study of the Global Suitable Habitat of Brazilian Tobacco Based on MaxEnt Model[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(3): 439-445.
|
[34] |
Niu Q, Dang X, Li Y. et al. Suitability Analysis for Topographic Factors in Loess Landslide Research: A Case Study of Gangu County, China[J]. Environmental Earth Sciences, 2018,77:294.
|
[35] |
Niu Q F, Cheng W M, Liu Y, et al. Risk Assessment of Secondary Geological Disasters Induced by the Yushu Earthquake[J]. Journal of Mountain Science, 2012, 9(2): 232-242.
|
[36] |
刘童童, 吴跃开, 胡凯. 基于MaxEnt模型的贵州萧氏松茎象适生区预测[J]. 南方林业科学, 2023, 51(3): 65-69.
Liu Tongtong, Wu Yuekai, Hu Kai. Predicting Potentially Suitable Area of Hylobitelus Xiaoi in Guizhou Based on the MaxEnt Model[J]. South China Forestry Science, 2023, 51(3): 65-69.
|
[37] |
李云峰, 何平, 孟繁蕴. 基于MaxEnt模型的甘肃省南部洮河流域淫羊藿品质变化分析[J]. 四川大学学报(自然科学版), 2023, 60(2): 156-162.
Li Yunfeng, He Ping, Meng Fanyun. Quality Change Analysis of Epimedium Brevicornu Maxim. in Taohe River Basin in Southern Gansu Province Based on the MaxEnt Model[J]. Journal of Sichuan University (Natural Science Edition), 2023, 60(2): 156-162.
|
[38] |
任洪玉, 杜俊, 丁文峰, 等. 基于GIS的全国山洪灾害风险评估[J]. 灾害学, 2018, 33(4): 86-92.
Ren Hongyu, Du Jun, Ding Wenfeng, et al. Risk Assessment of Mountain Torrents Disaster in China Based on GIS[J]. Journal of Catastrophology, 2018, 33(4): 86-92.
|
[1] | XIONG Siting, WEI Ruyi, HOU Wei, DENG Zhichao, ZHANG Bochen, YAN Qin, LI Qingquan. Land Cover Classification Based on InSAR Coherence and LSTM Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240460 |
[2] | LI Hanxu, LI Xin, HUANG Guanwen, ZHANG Qin, CHEN Shipeng. LSTM Neural Network Assisted GNSS/SINS Vehicle Positioning Based on Speed Classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230061 |
[3] | TANG Shengjun, ZHANG Yunjie, LI Xiaoming, YAO Mengmeng, YE Zhihuang, LI Yaxin, GUO Renzhong, WANG Weixi. A High-Precision Indoor Point Cloud Classification Method Jointly Optimized by Super Voxel Random Forest and LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 525-533. DOI: 10.13203/j.whugis20220125 |
[4] | WEI Erhu, REN Xiaobin, LIU Jingnan, LI Lianyan, WU Shuguang, NIE Guigen. Prediction of Lunar Libration Parameters Using LSTM[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1815-1822. DOI: 10.13203/j.whugis20200318 |
[5] | WANG Li, XU Hao, SHU Bao, YI Chen, TIAN Yunqing. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. DOI: 10.13203/j.whugis20210131 |
[6] | ZHANG Zhenglu, WANG Xiaomin, DENG Yong, XIE Niansheng. Application of Fuzzy Neural Network in Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 6-8. |
[7] | ZHANG Zhenglu, WANG Hongchen, DENG Yong, XIE Niansheng. Methods for Landslide Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1387-1389. |
[8] | DENG Xingsheng, WANG Xinzhou. Application of Dynamic Neural Network in Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 93-96. |
[9] | WANG Xinzhou DENG Xingsheng, . Fuzzy Neural Network Modeling for Dam Deformation Prediction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 588-591. |
[10] | Deng Yuejin, Wang Baoyuan, Zhang Zhenglu. Application of Fuzzy Artifical Neural Network to the Deformation Analysis and Predication of Side Slope[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 26-31. |