LI Shuang. Analysis and Prospect of the U.S. Army’s Decrypted Keyhole Satellite Program[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230128
Citation: LI Shuang. Analysis and Prospect of the U.S. Army’s Decrypted Keyhole Satellite Program[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230128

Analysis and Prospect of the U.S. Army’s Decrypted Keyhole Satellite Program

More Information
  • Received Date: April 09, 2023
  • Available Online: September 07, 2023
  • The U.S. military launched the "Keyhole Satellite Project" (KeyHole) in the 1950s and recorded the surface and military conditions around the world. This batch of data was officially declassified in the 1990s and used for research on global changes and other fields. Keyhole satellite imagery, a remote sensing data set with earlier shooting time and high image quality, is exciting for researchers. However, compared with the extensive research and application of modern commercial satellites such as Landsat, Keyhole's related research is far from deep enough in modern science such as remote sensing or history. Starting from the dual perspectives of remote sensing and history, this article systematically sorts out the keyhole satellite program of the US military, expounds the background of its interpretation, analyzes its data characteristics, and introduces its decryption and downloading process. Then, taking the Shanghai area in 1965 as an example, the processing and image classification methods of historical images were discussed. This study will further enrich the research content of aerial images in the historical period, and provide a solid historical basis and data basis for the development of research in the pre-remote sensing era, especially the pre-Landsat period, and the research of forming a longer time series with Landsat and other data.
  • [1]
    Wulder M A, Roy D P, Radeloff V C, et al. Fifty Years of Landsat Science and Impacts[J]. Remote Sensing of Environment, 2022, 280:113195
    [2]
    Huang Xin, Li Jiayi, Yang Jie, et al. 30 m Global Impervious Surface Area Dynamics and Urban Expansion Pattern Observed by Landsat Satellites:From 1972 to 2019. Science China Earth Sciences, 2021, 64:1922-1933(黄昕,李家艺,杨杰,等. Landsat卫星观测下的30m全球不透水面年度动态与城市扩张模式(1972-2019).中国科学:地球科学, 2021, 51(11):1894-1906)
    [3]
    Liang Qizhang, Qi Qingwen, Jiang Lili, et al. A Primary Exploration of the Heritage and Cultural Values of Ancient Chinese Maps[J]. Acta Geographica Sinica, 2016, 71(10):1833-1848(梁启章,齐清文,姜莉莉,等.中国古地图遗产与文化价值[J].地理学报, 2016, 71(10):1833-1848)
    [4]
    Qi Qingwen. Research on the Heritage Sequence of Chinese Ancient, Near-modern and Modern Cartography[J]. Journal of Geo-information Science, 2016, 18(1):2-13(齐清文.中国古-近-现代地图的传承脉络探究[J].地球信息科学学报, 2016, 18(1):2-13)
    [5]
    Man Zhimin. Spacial and temporal data structure for local study[J]. Journal of Chinese Historical Geography, 2008, 23(2):5-11(满志敏.小区域研究的信息化:数据架构及模型[J].中国历史地理论丛, 2008, 23(2):5-11)
    [6]
    Hammer E.L. Near Eastern Landscape and Declassified U2 Aerial Imagery[J]. Advances in Archaeological Practice, 2019, 7(2):107-126
    [7]
    Xu Lin. Aerial Photographs of China in the 1950s and 1960s in the U.S. National Archives[J]. Journal of Architecture History, 2021(3):149-155(徐林.美国国家档案馆藏中国二十世纪五六十年代航空照片简介[J].建筑史学刊, 2021(3):149-155)
    [8]
    Deshpande P, Belwalkar A, Dikshit O, et al. Historical land cover classification from CORONA imagery using convolutional neural networks and geometric moments[J]. International Journal of Remote Sensing, 2021, 42(13):5144-5171
    [9]
    Rizayeva A, Nita M D, Radeloff V C. Large-area, 1964 land cover classifications of Corona spy satellite imagery for the Caucasus Mountains[J]. Remote Sensing of Environment, 2023, 284:113343
    [10]
    Galiatsato N, Donoghue D, Philip G. High Resolution Elevation Data Derived from Stereoscopic CORONA Imagery with Minimal Ground Control. Photogrammetric Engineering&Remote Sensing, 2008,(9):1093-1106
    [11]
    Casana J. Global-Scale Archaeological Prospection using CORONA Satellite Imagery:Automated, CrowdSourced, and Expert-led Approaches. Journal of Field Archaeology, 2020, 45(S1):S89-S100
    [12]
    Hao Yuanlin, Moriya Kazuki. The application of CORONA Satellite Image in Urban Archaeology[J]. Research of China's Frontier Archaeology, 2017(2):313-323(郝园林,森谷一树. CORONA影像在城市考古中的应用[J].边疆考古研究, 2017(2):313-323)
    [13]
    Wang Xin, Zhang Jingfa, Jiang Wenliang, et al. Application of Keyhole satellite data in active fault study:A case example of Jiangsu segment of Tan-Lu fault zone[J]. Journal of Remote Sensing, 2018, 22(Sup):233-246(王鑫,张景发,姜文亮,等.美国锁眼侦查卫星遥感数据在活动断层研究中的应用——以郯庐断裂带江苏段为例[J].遥感学报, 2018, 22(增刊):233-246)
    [14]
    Lu Lejun, Zhou Yu. Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images:A Case Example of 1976 Chaldiran Earthquake, Turkey[J]. Geomatics and Information Science of Wuhan University, 2021(2):289-295(卢乐浚,周宇.利用锁眼卫星影像提取历史地震同震位移——以1976年土耳其Chaldiran地震为例[J].武汉大学学报(信息科学版), 2021(2):289-295)
    [15]
    Zhang Lei, He Jie. Historical Lakes and Ponds Landscape of Cities in the North China Plain:A Case Study of Huaiyang and the Interpretation Methodology of CORONA Satellite Images[J]. Journal of Chinese Historical Geography, 2020, 35(2):14-29(张蕾,何捷.豫东平原古城淮阳城湖湿地历史景观探析——兼论科罗纳(CORONA)影像资料的解读与运用[J].中国历史地理论丛, 2020, 35(2):14-29)
    [16]
    Xu Yaochen, Liu Ben, Lu Huan, et al. Reconstruction of Landscape Pattern based on CORONA KH-4B Image:A Case Study in Xixi Wetland, Hangzhou[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(11):2233-2242(徐遥辰,刘贲,卢奂,等.基于CORONA KH-4B影像的湿地景观格局重建——以杭州西溪湿地为例[J].浙江大学学报(工学版), 2018, 52(11):2233-2242)
    [17]
    Huo Xiaowei, Luo Wen. Utilization of Key Hole Satellite Imagery in the Aspects of Heritage Safety and Sustainable Development[J]. China Ancient City, 2021, 35(7):75-82(霍晓卫,骆文.遗产安全和可持续发展视野下"锁眼"卫星图的利用[J].中国名城, 2021, 35(7):75-82)
    [18]
    Zhao Qiuyan. Development of American Imaging Intelligence Satellites[J]. Spacecraft Recovery&Remote Sensing, 1999, 20(3):31-39(赵秋艳.美国成像侦察卫星的发展[J].航天返回与遥感, 1999, 20(3):31-39)
    [19]
    Sputnik Launched[OL].[2023-04-01] https://www.history.com/this-day-in-history/sputnik-launched
    [20]
    CORONA (satellite)[OL].[2023-03-22] https://en.wikipedia.org/wiki/CORONA_(satellite)
    [21]
    CORONA Satellite Photographs from the U.S. Geological Survey[OL].[2023-03-22] https://cmr.earthdata.nasa.gov/search/concepts/C1220566377-USGS_LTA.html
    [22]
    Declassified Satellite Imagery-1 Digital Object Identifier (DOI) number:/10.5066/F78P5XZM
    [23]
    Corona and the Cold War:A Light in the Darkness[OL].[2023-03-21] https://airandspace.si.edu/exhibitions/space-race/online/sec400/sec440.htm
    [24]
    Declassified Satellite Imagery-2 Digital Object Identifier (DOI) number:/10.5066/F74X5684
    [25]
    Declassified Satellite Imagery-3 Digital Object Identifier (DOI) number:/10.5066/F7WD3Z10
    [26]
    EarthExplorer[OL].[2023-04-08] https://earthexplorer.usgs.gov/
    [27]
    Release of Imagery Acquired by Space-Based National Intelligence Reconnaissance Systems, February 22, 1995[OL].[2023-04-05] https://sgp.fas.org/clinton/eo12951.html
    [28]
    Visit the Cartographic Research Room in College Park, Maryland[OL].[2023-04-08] https://www.archives.gov/research/cartographic/visit
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (761) PDF downloads (186) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return