NIU Xuelei, YANG Jun, YAN Haowen. Deep Belief Networks Considering WeMaps' Recommendation Factors[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230053
Citation: NIU Xuelei, YANG Jun, YAN Haowen. Deep Belief Networks Considering WeMaps' Recommendation Factors[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230053

Deep Belief Networks Considering WeMaps' Recommendation Factors

More Information
  • Received Date: June 03, 2023
  • Available Online: July 16, 2023
  • Objectives: In the cold start phase of the Wemaps' recommendation system, traditional deep belief networks have low efficiency in mining fine-grained information, resulting in a decrease in recommendation accuracy. Therefore, this paper proposes a D eep B elief network considering WeMaps' r ecommendation Fact ors (DBRFact). The structured information of clustering and rich semantic information in the deep belief networks are used to alleviate the problem of low recommendation accuracy during the cold start. In addition, the implicit semantic interaction information between the users and the WeMaps is mined to implement customized recommendations. Methods: First, a Density-Based Spatial Clustering of Application with Noise clustering algorithm is employed to cluster the historical samples of the users and the WeMaps. Secondly, the core points (i.e., recommendation factors), boundary points, and outliers are selected, and the recommendation factors are constructed into different visual and hidden layers. Finally, the visual neurons of the restricted Boltzmann machine are replaced with Gaussian units. Then, a deep belief network is used to fine-tune the input data from low level to high level to improve the recommendation accuracy. Results: The accuracies on the FoodMaps, DrivingMaps, TourMaps, and SchoolMaps datasets were 0.77532, 0.76818, 0.77518 and 0.77464, respectively, and the Root Mean Square Errors (RMSE) were 0.19078, 0.19476, 0.19033 and 0.19092, respectively. Conclusions: The experimental results have showed that the proposed algorithm can accurately recommend the interested WeMaps' information for users.
  • [1]
    Zhao Qianwei, Ma Yuanyuan. A Probe into the Spreading Characteristics of WeChat Rumors in the Era of We Media[J]. Journal of News Research, 2014, 5(16):11. (赵前未, 马缘园. 自媒体时代微信谣言传播特点初探[J]. 新闻研究导刊, 2014, 5(16):11)
    [2]
    Wang Haiying, Yan Haowen, Tian JiangPeng, et al. WeMaps in the Perspective of the PostModernist Philosopy[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12):2026-2037. (王海鹰, 闫浩文, 田江鹏, 等. 后现代哲学视野下的微地图[J]. 武汉大学学报·信息科学版, 2022, 47(12):2026-2037.)
    [3]
    Shen Jinxia. Information Propagational Features of the We Media[J]. Today's Massmedia, 2012, 20(9):94-96. (申金霞. 自媒体时代的信息传播特点探析[J]. 今媒体. 2012, 20(9):94-96.)
    [4]
    Guo Renzhong, Chen Yebin, Zhao Zhigang, et al. Scientific Concept and Representation Framework of Maps in the ICT Era[J].Geomatics and Information Science of Wuhan University, 2022. 47(12):1978-1987. (郭仁忠, 陈业滨, 赵志刚, 等. ICT时代地图的科学概念及表达框架[J] 武汉大学学报·信息科学版, 2022, 47(12):1978-1987.)
    [5]
    Wang Jiayao, Wu Fang, Yan Haowen. Cartography:Its Past, Present and Future[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):829-84. 2(王家耀, 武芳, 闫浩文. 大变化时代的地图学[J]. 测绘学报, 2022, 51(6):829-842.)
    [6]
    Liu Yu, Guo Hao, Li Haifeng, et al. A Note on GeoAI from the Perspective of Geographical Law[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):1062-1069. (刘瑜, 郭浩, 李海峰, 等. 从地理规律到地理空间人工智能[J]. 测绘学报, 2022, 51(6):1062-1069.)
    [7]
    Ying Shen, Hou Siyuan, Su Junru, et al. Characteristics of the Game Maps[J]. Geomatics and Information Science of Wuhan University, 2020. 45(9):1334-1443. (应申, 候思远, 苏俊如, 等. 论游戏地图的特点. 武汉大学学报·信息科学版, 2020. 45(9):1334-1443.)
    [8]
    Adomavicius G, Tuzhilin A. Toward the next Generation of Recommender Systems:A Survey of the State-of-the-art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
    [9]
    Su X Y, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques[J]. Advances in Artificial Intelligence, 2009, 2009:2.
    [10]
    Verbert K, Manouselis N, Ochoa X, et al. Context-aware Recommender Systems for Learning:A Survey and Future Challenges[J]. IEEE Transactions on Learning Technologies, 2012, 5(4):318-335.
    [11]
    Mooney R J, Roy L. Content-based Book Recommending Using Learning for Text Categorization[C]//Proceedings of the fifth ACM conference on Digital libraries. San Antonio, Texas, USA, 2000:195-204.
    [12]
    Ye M, Yin P F, Lee W C. Location Recommendation for Location-based Social Networks[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, California, 2010:458-461.
    [13]
    Ma C, Zhang Y X, Wang Q L, et al. Point-ofinterest Recommendation:Exploiting Selfattentive Autoencoders with Neighbor-aware Influence[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino, Italy, 2018:697-706.
    [14]
    Davidson J, Liebald B, Liu J N, et al. The YouTube Video Recommendation System[C]//Proceedings of the fourth ACM conference on Recommender systems. Barcelona, Spain, 2010:293-296.
    [15]
    Bordes A, Usunier N, Garcia-Durán A, et al. Translating Embeddings for Modeling MultiRelational Data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, New York:ACM, 2013, 2:2787-2795.
    [16]
    Wang H, Wang N Y, Yeung D Y. Collaborative Deep Learning for Recommender Systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia, 2015:1235-1244.
    [17]
    Zhang F Z, Nicholas J Y, Lian D F, et al. Collaborative Knowledge Base Embedding for Recommender Systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016:353-362.
    [18]
    He Yang, Yan Haowen, Wang Zhuo, et al. Landmark Extraction Method and Personalized Wayfinding Application for WeMap[J]. Journal of Geo-information Science, 2022, 24(5):827-836. (何阳, 闫浩文, 王卓, 等. 面向微地图的地标提取方法及个性化寻路应用[J]. 地球信息科学学报, 2022, 24(5):827-836.)
    [19]
    Niu Xuelei, Yang Jun, Yan Haowen. 2022. WeMap Recommendation by Fusion of Knowledge Graph and Collaborative Filtering. Journal of Geo-information Science. (牛雪磊, 杨军, 闫浩文. 融合知识图谱与协同过滤的微地图推荐[J]. 地球信息科学学报.)(网络优先出版)
    [20]
    Dai Shaosheng, Liu Xiaobing, Lai Zhiying, et al, Gridded Local Adaptive DBSCAN Clustering Algorithm[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2022, 34(2):250-257. (代少升, 刘小兵, 赖智颖, 等. 网格化局部自适应DBSCAN聚类算法[J]. 重庆邮电大学学报(自然科学版), 2022, 34(2):250-257.)
    [21]
    Xiong Xi, Qiao Shaojie, Han Nan, et al. Affective Impression:Sentiment-Awareness POI Suggestion via Embedding in Heterogeneous LBSNs IEEE Transactions on Affective Computing, 2019. 13(1):272-284.
    [22]
    Fischer A, Igel C, Training Restricted Boltzmann Machines:An Introduction. Pattern Recognition, 2014, 47:25-39.
    [23]
    Hinton G E. A Practical Guide to Training Restricted Boltzmann Machines. Springer Neural Networks:Tricks of the Trade. Lecture Notes in Computer Science, 2012, 7700:599-619.
    [24]
    Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 2006, 18(7):1527-1554.
    [25]
    Zhang Shuhua, Li Haiying, Liu Fang. Review on research of identity[J]. Psychological Research, 2012, 5(1):21-27. (张淑华, 李海莹, 刘芳. 身份认同研究综述[J]. 心理研究, 2012, 5(1):21-27.)
  • Related Articles

    [1]SHA Hongjun, YUAN Xiuxiao. State-of-the-Art Binocular Image Dense Matching Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. DOI: 10.13203/j.whugis20230037
    [2]FANG Wenjiang, LI Jingzhong. A Morphing of Linear Feature Based on Shape Context Matching[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 963-967. DOI: 10.13203/j.whugis20150674
    [3]LI Deren, LIU Laixing. Context-Aware Smart City Geospatial Web Service Composition[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 853-860. DOI: 10.13203/j.whugis20160089
    [4]AI Bo, TANG Xinming, AI Tinghua, WANG Huibing. Visualization of Spatio-Temporal Information Based on Transparency[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 229-232.
    [5]LUO An, WANG Yandong, GONG Jianya. A Semantic Matching Method for Geospatial Information Service Composition Based on Context[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 368-372.
    [6]WANG Shaoyi, DU Qingyun. Design and Implementation of Geospatial Information Services Middleware Based on Context-awareness[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 790-793.
    [7]SHI Yunfei, LI Lin, ZHANG Lingling. Framework and Its Core Contents Research of Ubiquitous Geographic Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 150-153.
    [8]SUN Min, ZHAO Xuesheng, ZHAO Renliang. Global GIS and It's Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 41-45.
    [9]HU Peng, LIU Peilan, HU Hai, YANG Chuanyong. Metric Space of Earth Information and Global GIS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 317-321.
    [10]Mai Xueliang, Zhang Zuxun, Zhang Jianqing. Global Broken Contour Connection Through Maximal Clique Graph Search Based on Relational Structural Constraints[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 101-105.

Catalog

    Article views (228) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return