WANG Le-yang, ZHAO Wei-feng. Parameter estimation methods for nonlinear mixed additive and multiplicative random error model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230016
Citation: WANG Le-yang, ZHAO Wei-feng. Parameter estimation methods for nonlinear mixed additive and multiplicative random error model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230016

Parameter estimation methods for nonlinear mixed additive and multiplicative random error model

More Information
  • Received Date: November 12, 2023
  • Available Online: May 12, 2024
  • Objectives: In the field of geodesy, with the continuous development of modern observation technology, so that the measurement data not only contain additive errors, there are also multiplicative errors, purely considering the processing of additive errors can no longer meet the requirements. Existing methods for dealing with mixed additive and multiplicative errors models are mainly based on the fact that the unknown parameters and observations are in linear form, and few studies have been conducted on the fact that the unknown parameters and observations are in nonlinear form. Methods: In order to extend the parameter estimation method of the mixed additive and multiplicative errors model, this paper determines the reasonable weight matrix of nonlinear mixed additive and multiplicative errors model based on the law of error propagation and the principle of least squares and applies the idea of Taylor's formula expansion, and derives the least squares, Gauss-Newton method, and weighted least squares of the nonlinear mixed additive and multiplicative errors model. Due to the nonlinear nature, it makes the weighted least squares solution biased, so it needs to be analyzed for its bias. The bias-corrected weighted least squares method is derived by deviation analysis and proof. Results: It can be seen through the calculation and comparative analysis of the arithmetic examples that a reasonable weighting method is conducive to improving the correctness of the model parameter estimation results, and when the model nonlinearity is high, the bias-corrected weighted least squares method can obtain better parameter estimation results. Conclusions: The feasibility and validity of four methods for parameter estimation of the nonlinear mixed additive and multiplicative errors model are demonstrated, and the bias-corrected weighted least squares method is more suitable for processing geodetic data from such nonlinear models with a mixture of mixed additive and multiplicative errors.
  • Related Articles

    [1]ZHANG Lefei, HE Fazhi. Hyper-spectral Image Rank-Reducing and Compression Based on Tensor Decomposition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 193-197. DOI: 10.13203/j.whugis20140688
    [2]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [3]FU Haiqiang, WANG Changcheng, ZHU Jianjun, XIE Qinghua, ZHAO Rong. A Polarimetric Classification Method Based on Neumann Decomposition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 607-611. DOI: 10.13203/j.whugis20130372
    [4]ZHANG Jianqing, DUAN Yan. A Supervised Classification Method of Polarimetric Sythetic ApertureRadar Data Using Watershed Segmentation and Decision Tree C5.0[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 891-896. DOI: 10.13203/j.whugis20120112
    [5]chen qihao,  liu xiuguo,  huang xiaodong,  jiang ping. an inte grated four-component model-based decomposition  of polarimetric sar with covariance matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 873-877.
    [6]ZHANG Bin, MA Guorui, LIU Guoying, QIN Qianqing. MRF-Based Segmentation Algorithm Combined with Freeman Decomposition and Scattering Entropy for Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1064-1067.
    [7]ZHANG Bin, YANG Ran, XIE Xing, QIN Qianqing. Classification of Fully Polarimetric SAR Image Based on Polarimetric Target Decomposition and Wishart Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 297-300.
    [8]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.
    [9]ZHANG Haijian, YANG Wen, ZOU Tongyuan, SUN Hong. Classification of Polarimetric SAR Image Based on Four-component Scattering Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 122-125.
    [10]WANG Wenbo, FEI Pusheng, YI Xuming, ZHANG Jianguo. Denoising of SAR Images Based on Lifting SchemeWavelet Packet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 585-588.

Catalog

    Article views (173) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return