YIN Bo-qing, XING Tao, XING Yan-qiu, YANG Shu-hang, CHANG Xiao-qing, DING Zhi-wen. Research on Visual SLAM Algorithm for Individual Tree Localization in Forest[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220794
Citation: YIN Bo-qing, XING Tao, XING Yan-qiu, YANG Shu-hang, CHANG Xiao-qing, DING Zhi-wen. Research on Visual SLAM Algorithm for Individual Tree Localization in Forest[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220794

Research on Visual SLAM Algorithm for Individual Tree Localization in Forest

More Information
  • Received Date: October 23, 2023
  • Available Online: December 14, 2023
  • Objectives: Individual Tree localization is an important issue in the field of forestry remote sensing. Monocular visual SLAM algorithm is a significant tool for outdoor spatial localization and mapping, which solved the problem of inability to locate due to missing GNSS signal caused by tree canopy occlusion in forest resource survey. However, the existing monocular vision SLAM algorithm cannot achieve direct localization of standing trees in sample plots. To solve this problem, we proposed the Indi-tree SLAM algorithm based on monocular vision SLAM algorithm in this paper. Methods: First, camera pose estimation was performed using the DSO-SLAM algorithm and then the actual displacement of the camera was applied to restore the map scale. Second, according to the principle of edge detection technique in depth image, the position of standing trees in sample plots was determined. Finally, the camera coordinates and tree coordinates are converted based on the relationship between the camera and standing trees during the image acquisition process, ultimately achieving the direct positioning of standing trees within the sample plots. Results: In this experiment, three square sample plots with a side length of 40 m were scanned by the camera to verify the accuracy of the Indi-tree SLAM algorithm proposed in the paper. The experimental results indicated that the root-mean-square error of the sample wood coordinates calculated by the proposed single-wood positioning algorithm is 0.44 m along both x and y axes, and the average positioning error is 6.3%. Conclusion:This study implemented direct positioning of standing trees in the sample plots, greatly reducing the measurement time of forest structure parameters and offering an accurate and efficient feasible solution for forest resource inventory.
  • Related Articles

    [1]XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084
    [2]WANG Mengmeng, YE Yuanxin, ZHU Bai, ZHANG Guo. An Automatic Registration Method for Optical and SAR Images Based on Spatial Constraint and Structure Features[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 141-148. DOI: 10.13203/j.whugis20190354
    [3]CHEN Zhanlong, ZHANG Dingwen, XIE Zhong, WU Liang. Spatial Scene Matching Based on Multilevel Relevance Feedback[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1422-1428. DOI: 10.13203/j.whugis20160360
    [4]SUN Yizhong, YAO Chi, CHEN Shaoqin, XU Wenxiang. Geographical Elements′ Spatial Location Identification Considering Geometric Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1486-1489.
    [5]PENG Mingjun. Division of Urban Spatial Information Multi-grid Based on Hierarchical Spatial Reasoning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1112-1115.
    [6]LI Zuchuan, MA Jianwen, ZHANG Rui, LI Liwei. Extracting Damaged Buildings Information Automatically Based on Textural and Morphological Features[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 446-450.
    [7]XIE Jibo, WU Huayi, GONG Jianya. Framework to Keep Multilevel and Heterogeneous Spatial Databases Synchronization Based on XML[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 415-418.
    [8]LIU Zhigang, LI Deren, QIN Qianqing, SHI Wenzhong. Hierarchical Multi-category Support Vector Machines Based on Inter-class Separability in Feature Space[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 324-328.
    [9]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [10]Li Lin. The Features of Spatial Database Query Languages[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 107-110.

Catalog

    Article views (234) PDF downloads (44) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return