Citation: | CHEN Zhixin, XU Chuang, ZHANG Heng, YU Hangtao, CHEN Haopeng, YAO Chaolong. Lithospheric structure feature of the Tibetan Plateau revealed by multi-scale analysis of gravity gradients[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220776 |
[1] |
Zhang Yan, Cheng Shunyou, Zhao Bingkun, et al. The feature of tectonics in the Tibet Plateau from new regional gravity signals[J]. Chinese Journal of Geophysics, 2013, 56(4):1369-1380(张燕,程顺有,赵炳坤,等.青藏高原构造结构特点:新重力异常成果的启示[J].地球物理学报,2013,56(04):1369-1380)
|
[2] |
Zhu Chuandong, Liu Jinzhao, Chen Ming, et al. The Analysis on Characteristics of Gravity Effect of Large-Scale Surface Fluid in Qinghai-Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2020, 40(09):947-951(朱传东,刘金钊,陈铭,等.青藏高原大尺度地表流体的重力效应特征分析[J].大地测量与地球动力学,2020,40(09):947-951)
|
[3] |
Li Qiusheng, Peng Suping, Gao Rui. A Review on the Moho Discontinuity beneath the Tibetan Plateau[J].Geological Review, 2004(06):598-612+670(李秋生,彭苏萍,高锐.青藏高原莫霍面的研究进展[J].地质论评,2004(06):598-612+670)
|
[4] |
He Huiyou, Fang Jian, Chen Ming, et al. Moho Depth of the East China Sea Inversed Using Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):682-689(何慧优,方剑,陈铭,等.利用重力数据反演中国东海海域莫霍面深度[J].武汉大学学报(信息科学版),2019,44(05):682-689)
|
[5] |
Lu Zhanwu, Gao Rui, Li Qiusheng, et al. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958-2004)[J]. Chinese Journal of Geophysics, 2006, 49(3):753-770(卢占武,高锐,李秋生,等.中国青藏高原深部地球物理探测与地球动力学研究(1958-2004)[J].地球物理学报,2006(03):753-770)
|
[6] |
Deng Wenbin, Su Danjing, Gao Yuxiao, et al. Effect of various gravity field models on the Moho topography inversion in the Tibet[J]. Science of Surveying and Mapping, 2020,45(04):1-6+12(邓文彬,苏丹竞,高宇潇,等.不同重力场模型对青藏高原莫霍面反演的影响[J].测绘科学,2020,45(04):1-6+12)
|
[7] |
Xu C, Liu Z, Luo Z, et al. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences,2017,138:378-386
|
[8] |
Ning Jinsheng, Wang Zhengtao, Chao Nengfang. Research status and progress in international next generation satellite gravity measurement missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):1-8(宁津生,王正涛,超能芳.国际新一代卫星重力探测计划研究现状与进展[J].武汉大学学报信息科学版, 2016, 41(1):1-8)
|
[9] |
Luo Zhicai, Zhong Bo, Zhou Hao, et al. Progress in determining the Earth's gravity field model by satellite gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1713-1727(罗志才,钟波,周浩,等.利用卫星重力测量确定地球重力场模型的进展[J].武汉大学学报信息科学版, 2022, 47(10):1713-1727)
|
[10] |
Zhu Yiqing, Liang Weifeng, Chen Shi, et al. Study on mechanism of gravity field change in northeastern margin of Qinghai-Tibet Peateau[J]. Journal of Geodesy and Geodynamics, 2012,32(03):1-6(祝意青,梁伟锋,陈石,等.青藏高原东北缘重力变化机理研究[J].大地测量与地球动力学,2012,32(03):1-6)
|
[11] |
Yang Wencai, Sun Yanyun, Yu Changqing. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications[J]. Chinese Journal of Geophysics, 2015, 58(11):4115-4128(杨文采,孙艳云,于常青.青藏高原地壳密度变形带及构造分区[J].地球物理学报,2015,58(11):4115-4128)
|
[12] |
Duan Hurong, Kang Mingzhe, Wu Shaoyu, et al. Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field[J]. Chinese Journal of Geophysics,2020, 63(12):4345-4360(段虎荣,康明哲,吴绍宇,等.利用GRACE时变重力场反演青藏高原的隆升速率[J].地球物理学报,2020,63(12):4345-4360)
|
[13] |
Li Jinbo, Xu Chuang, Jian Guangyu, et al. Multi-scale analysis of gravity gradients in South China Sea[J]. Science of Surveying and Mapping, 2020,45(11):1-7(黎晋博,许闯,简光煜,等.中国南海重力梯度多尺度分析[J].测绘科学,2020,45(11):1-7)
|
[14] |
Xia Chaolong. Inversion of crustal thickness of Qinghai-Xizang Plateau based on GOCE gradient data[J]. Ability and Wisdom, 2013(14):289-290(夏朝龙.基于GOCE梯度数据反演青藏高原地壳厚度[J].才智,2013(14):289-290)
|
[15] |
Li Honglei, Fang Jian, Wang Xinsheng, et al. Lithospheric 3-D density structure beneath the Tibetan plateau and adjacent areas derived from joint inversion of satellite gravity and gravity-gradient data. Chinese Journal of Geophysics, 2017, 60(6):2469-2479(李红蕾,方剑,王新胜,等.重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J].地球物理学报,2017,60(06):2469-2479)
|
[16] |
Jiang Tao. Regional geoid determination using airborne gravimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(01):152(蒋涛.利用航空重力测量数据确定区域大地水准面[J].测绘学报,2013,42(01):152)
|
[17] |
Hou Zunze, Yang Wencai. An operational research on the wavelet analysis[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1995(03):1-9(侯遵泽,杨文采.小波分析应用研究[J].物探化探计算技术,1995(03):1-9)
|
[18] |
Wu Lixin, Yang Mingzhi, Zhao Weiming, et al. Crustal thickness inversed from multi-scale decomposition of bouguer gravity anomalies in northeastern of QingHai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics, 2011,31(01):19-23(吴立辛,杨明芝,赵卫明,等.利用重力多尺度分解资料反演青藏高原东北缘地壳厚度[J].大地测量与地球动力学,2011, 31(01):19-23)
|
[19] |
Xuan Songbai. Gravity study on crustal structure and material migration beneath the eastern Tibetan Plateau[D]. Wuhan:Wuhan University, 2016(玄松柏.青藏高原东缘地壳结构与物质运移的重力研究[D].武汉:武汉大学,2016)
|
[20] |
Fu Qiang, Liu Tianyou, Ma Long, et al. WAVELET TRANSFORM ANALYSES OF FAULTS DETECTION ON ISOSTATIC GRAVITY ANOMALIES:A CASE STUDY FROM THE QAIDAM BASIN AND ITS ADJACENT AREAS[J]. Seismology and Geology, 2019,41(4):960-978(付强,刘天佑,马龙,等.基于小波变换和均衡重力异常的断裂识别——以柴达木盆地及周边地区为例[J].地震地质,2019,41(04):960-978)
|
[21] |
Chen Li, Ailixiati·Yushan, Zhu Zhiguo, et al. Multi-scale Decomposition of Wavelet of the Temporal Gravity Variation in Northern Tianshan Mountain[J]. Earthquake Research in China, 2020,36(04):935-944(陈丽,艾力夏提·玉山,朱治国,等.北天山中段时变重力场离散小波多尺度分解[J].中国地震,2020,36(04):935-944)
|
[22] |
Xu C, Luo Z, Sun R, et al. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau[J]. Geophysical Journal International, 2018, 213(3):2085-2095
|
[23] |
Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J].Geophysics, 1970, 35:293-302
|
[24] |
Xing Zhibin. Research on Theory and Methodology of Earth Gravity Field Recovery Based on GOCE Gravity Gradient data[D]. Zhengzhou:PLA Strategic Support Force Information Engineering University, 2019(邢志斌. GOCE卫星重力梯度数据恢复地球重力场理论与方法研究[D].郑州:战略支援部队信息工程大学,2019)
|
[25] |
Oldenburg D W. THE INVERSION AND INTERPRETATION OF GRAVITY ANOMALIES[J]. Geophysics, 1974, 39(4):526-536
|
[26] |
Shi Qingbin, Hu Shuanggui, Yang Lei. Inversion of moho depth in Tibetan plateau based on high-precision satellite gravity data[J]. Chinese Journal of Engineering Geophysics, 2018, 15(04):466-474(史庆斌,胡双贵,杨磊.基于高精度卫星重力数据反演青藏高原莫霍面深度[J].工程地球物理学报,2018,15(04):466-474)
|
[27] |
Li H O, Xu X W, Jiang M. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau-Receiver functions and travel-time residuals analysis of north Hi-Climb[J]. Science in China (Series D:Earth Sciences),2008(09):1297-1305
|
[28] |
Gao Rui, Xiong Xiaosong, Li Qiusheng, et al. The Moho Depth of Qinghai-Tibet Plateau Revealed by Seismic Detection[J]. Acta Geoscientica Sinica, 2009,30(06):761-773(高锐,熊小松,李秋生,等.由地震探测揭示的青藏高原莫霍面深度[J].地球学报,2009, 30(06):761-773)
|
[29] |
Shin Y H, Shum C K, Braitenberg C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific reports, 2015, 5(1):1-7
|
[30] |
Mandal P, Srinivas D, Suresh G, et al. Modelling of crustal composition and Moho depths and their Implications toward seismogenesis in the Kumaon-Garhwal Himalaya. Scientific reports, 2021, 11:14067
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |