Citation: | Li Yangtao, Bao Tengfei, Li Tianyu. A robust real-time detection method for deepwater dam defects[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220734 |
[1] |
Cong Xu, Shao Wei Wang, Chong Shi Gu, et al. A Probabilistic Prediction Model for Displacement of Super High Arch Dams Considering the Deformation Spatial Association, 2021:15.(徐丛,王少伟,顾冲时,等.融合空间关联性的特高拱坝位移概率性预测模型[J].武汉大学学报(信息科学版). 2021:15)
|
[2] |
JinBao Sheng, Yan Xiang, DeWei Yang, et al. Key technologies and applications of safety diagnosis and smart management of reservoir dams, 2022, 44(07):1351-1366.(盛金保,向衍,杨德玮,等.水库大坝安全诊断与智慧管理关键技术与应用[J].岩土工程学报. 2022, 44(07):1351-1366).
|
[3] |
(向衍,盛金保,袁辉,等.中国水库大坝降等报废现状与退役评估研究[J].中国科学:技术科学. 2015, 45(12):1304-1310.)2015, 45(12):1304-1310.
Yan Xiang, JinBao Sheng, Hui Yuan, et al. Research on degrading and decommissioning assessment of reservoir in China,2015, 45(12):1304-1310.
|
[4] |
ZhongRu Wu, ChongShi Gu, HuaiZhiSu, et al. Review and prospect of calculation analysis methods in hydro-structure engineering,2015, 43(05):11.(吴中如,顾冲时,苏怀智,等.水工结构工程分析计算方法回眸与发展[J].河海大学学报(自然科学版). 2015, 43(05):11.)
|
[5] |
LiYang Xiao, Wei Li, Bo Yuan, et al. Pavement Crack Automatic Identification Method Based on Improved Mask R-CNN Model,2022:16.(肖力炀,李伟,袁博,等.一种改进型Mask R-CNN模型的路面裂缝识别方法[J].武汉大学学报(信息科学版). 2022:16.)
|
[6] |
Wen Gao Xie, Yi Xiao Zhang, Ai Rong Liu, et al. METHOD FOR CONCRETE SURFACE CRACKING DETECTION BASED ON ROV AND DIGITAL IMAGE TECHNOLOGY 2022, 39(S1):7.(谢文高,张怡孝,刘爱荣,等.基于水下机器人与数字图像技术的混凝土结构表面裂缝检测方法[J].工程力学. 2022, 39(S1):7.)
|
[7] |
Kang Wei,Fang Yuan,ZhiQiang Dong, et al. Precision analysis and civil application of multi-camera digital image correlation method based on encoded targets2021, 51(02):8.(魏康,员方,董志强,等.基于标志点的多相机数字图像相关方法精度分析及土木工程中的应用[J].东南大学学报(自然科学版). 2021, 51(02):8.)
|
[8] |
YuFei Liu, JianSheng Fan, JianGuoNie, et al. Review and prospect of digital-image-based crack detection of structure surface2021, 54(06):79-98.(刘宇飞,樊健生,聂建国,等.结构表面裂缝数字图像法识别研究综述与前景展望[J].土木工程学报. 2021, 54(06):79-98.)
|
[9] |
YuFei Liu, Yu Qi, BaoLuo Li, et al. Intelligent detection of sensitive service indicators in multiple scenarios of structural maintenance, 2022, 43(10):1-15.(刘宇飞,齐玉,李保罗,等.工程结构运维多场景的敏感服役指标智能识别[J].建筑结构学报. 2022, 43(10):1-15.)
|
[10] |
ChunLei Liu, Tian'en Chen, Cong Wang, et al., A Survey of Few-shot Object Detection, 2022:23.(刘春磊,陈天恩,王聪,等.小样本目标检测研究综述[J].计算机科学与探索. 2022:23.)
|
[11] |
Xue Y, Li Y. A Fast Detection Method via Region-Based Fully Convolutional Neural Networks for Shield Tunnel Lining Defects[J]. Computer-Aided Civil and Infrastructure Engineering. 2018, 33(8):638-654.
|
[12] |
Zhou Z, Zhang J, Gong C. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-Aided Civil and Infrastructure Engineering. 2022, 37(6):762-780.
|
[13] |
WenQing Shang, HongBo Qi. Identification algorithm of field weeds based on improved Faster R-CNN and transfer learning, 2022, 43(10):7.(尚文卿,齐红波.基于改进Faster R-CNN与迁移学习的农田杂草识别算法[J].中国农机化学报. 2022, 43(10):7.)
|
[14] |
Wei Wang, XinYao Tang, Hua Cui, et al. Accurate Perception of Three-dimensional Vehicle Form in Roadside Monocular Perspective Based on CenterNet, 2022, 35(09):15.(王伟,唐心瑶,崔华,等.基于CenterNet的路侧单目视角车辆3D形态精确感知[J].中国公路学报. 2022, 35(09):15.)
|
[15] |
杨真真,郑艺欣,邵静,等.基于改进路径聚合和池化YOLOv4的目标检测[J].南京邮电大学学报(自然科学版). 2022, 42(05):7.
ZhenZhen Yang, YiXin Zheng, Jing Shao, et al. 2022, 42(05):7.
|
[16] |
JiShang Xu, CuiYin Liu, Ming Liu. An object detection method based on improved YOLOv4 path aggregation and pooling, 2022:8.(徐继尚,柳翠寅,刘明.改进YOLOV4-Tiny的SAR图像舰船小目标检测[J].小型微型计算机系统. 2022:8.)
|
[17] |
KeYou Guo, Xue Li, Min Yang. Real-time detection method of traffic information based on lightweight YOLOv4,2022:9.(郭克友,李雪,杨民.基于轻量化YOLOv4的交通信息实时检测方法[J].计算机应用. 2022:9.)
|
[18] |
Choi W, Cha Y. SDDNet:Real-Time Crack Segmentation[J]. IEEE Transactions on Industrial Electronics. 2020, 67(9):8016-8025.
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |