Citation: | WANG Chang, XIONG Hanjiang, TU Jianguang, ZHENG Xianwei. Semi-Supervised Learning for Pine Wilt Disease Detection in UAV Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220634 |
[1] |
汪晨,张辉辉,乐继旺,赵帅.基于深度学习和遥感影像的松材线虫病疫松树目标检测[J].南京师大学报(自然科学版),2021,44(03):84-89.
Wang Chen,Zhang Huihui,Le Jiwang,et al. Object Detection to the Pine Trees Affected by Pine Wilt Disease in Remote Sensing Images Using Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition), 2021,44(03):84-89.
|
[2] |
Shin S C. Pine wilt disease in Korea[M]//Pine wilt disease. Springer, Tokyo, 2008:26-32.
|
[3] |
Mamiya Y. History of pine wilt disease in Japan[J]. Journal of nematology, 1988, 20(2):219.
|
[4] |
Zhao B G. Pine wilt disease in China[M]//Pine wilt disease. Springer, Tokyo, 2008:18-25.
|
[5] |
Han H, Chung Y J, Shin S C. First report of pine wilt disease on Pinus koraiensis in Korea[J]. Plant disease, 2008, 92(8):1251-1251.
|
[6] |
黄华毅,马晓航,扈丽丽,黄咏槐,黄焕华.Fast R-CNN深度学习和无人机遥感相结合在松材线虫病监测中的初步应用研究[J].环境昆虫学报,2021,43(05):1295-1303.
Huang Huayi,Ma Xiaohang,Hu Lili,et al.The preliminary application of the combination of Fast RCNN deep learning and UAV remote sensing in the monitoring of pine wilt disease[J]. Journal of Environmental Entomology, 2021,43(05):1295-1303.
|
[7] |
黄麟,张晓丽,石韧.森林病虫害遥感监测技术研究的现状与问题[J].遥感信息,2006(02):71-75.
Huang Lin,Zhang Xiaoli,Shi Ren.Current Status and Problems in Monitoring Forest Damage Caused by Diseases and Insects Based on Remote Sensing[J]. Remote Sensing Information, 2006(02):71-75.
|
[8] |
Dennison P E, Brunelle A R, Carter V A. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data[J]. Remote Sensing of Environment, 2010, 114(11):2431-2435.
|
[9] |
Johnson B A, Tateishi R, Hoan N T. A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees[J]. International journal of remote sensing, 2013, 34(20):6969-6982.
|
[10] |
Park J, Sim W, Lee J. Detection of trees with pine wilt disease using object-based classification method[J]. Journal of forest and environmental science, 2016, 32(4):384-391.
|
[11] |
徐伟萌,杨浩,李振洪,程金鹏,林哈特,杨贵军.利用无人机数码影像进行密植型果园单木分割[J/OL].武汉大学学报(信息科学版):1-11[2022-11-04].
Xu Weimeng,Yang Hao,Li Zhenhong,et al.Single Tree Segmentation in Close-Planting Orchard Using UAV Digital Image[J].Geomatics and Information Science of Wuhan University. 1-11[2022-11-04].
|
[12] |
Leckie D G, Jay C, Gougeon F A, et al. Detection and assessment of trees with Phellinus weirii (laminated root rot) using high resolution multi-spectral imagery[J]. International Journal of Remote Sensing, 2004, 25(4):793-818.
|
[13] |
Yu R, Luo Y, Zhou Q, et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101:102363.
|
[14] |
Hoshikawa T, Yamamoto K. Individual tree detection and classification for mapping pine wilt disease using multispectral and visible color imagery acquired from unmanned aerial vehicle[J]. Journal of The Remote Sensing Society of Japan, 2020, 40(1):13-19.
|
[15] |
Deng X, Tong Z, Lan Y, et al. Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing[J]. AgriEngineering, 2020, 2(2):294-307.
|
[16] |
Syifa M, Park S J, Lee C W. Detection of the pine wilt disease tree candidates for drone remote sensing using artificial intelligence techniques[J]. Engineering, 2020, 6(8):919-926.
|
[17] |
Zhang R, Xia L, Chen L, et al. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images[J]. Trans. Chin. Soc. Agricult. Eng., 2020, 36(12):61-68.
|
[18] |
Huang R, Noble J A, Namburete A I L. Omnisupervised learning:scaling up to large unlabelled medical datasets[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018:572-580.
|
[19] |
周培诚,程塨,姚西文,韩军伟.高分辨率遥感影像解译中的机器学习范式[J].遥感学报,2021,25(01):182-197.
Zhou Peicheng,Cheng Gong,Yao Xiwen et,al. Machine learning paradigms in high-resolution remote sensing image interpretation. National Remote Sensing Bulletin,25(1):182-197.
|
[20] |
韩彦岭, 李鹏, 张云, 等. 主动学习与半监督技术相结合的海冰图像分类[J]. 遥感信息, 2019, 34(2):15-22.
Han Yanling,Li Peng,Zhang Yun.Combining Activate Learning with Semi-supervised Learning for Sea Ice Image Classification[J].Remote Sensing Information,2019,34(2):15-22.
|
[21] |
熊彪,江万寿,李乐林.基于高斯混合模型的遥感影像半监 督分 类[J]. 武汉 大学 学报(信息 科学 版),2011,36(01):108-112.
Xiong Biao,JIANG Wanshou,Li Lelin.Gauss Mixture Model Based Semi Supervised Classification for Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2011,36(01):108-112.
|
[22] |
Ren S, He K, Girshick R, et al. Faster r-cnn:Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
|
[23] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:779- 788.
|
[24] |
Tarvainen A, Valpola H. Mean teachers are better role models:Weight-averaged consistency targets improve semi-supervised deep learning results[J]. Advances in neural information processing systems, 2017, 30.
|
[25] |
Kim M I, Lee W K, Kwon T H, et al. Early detecting damaged trees by pine wilt disease using DI (Detection Index) from portable near infrared camera[J]. Journal of Korean Society of Forest Science, 2011, 100(3):374-381.
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |