LIU Shuang, HU Xiangyun, GUO Ning, CAI Hongzhu, ZHANG Henglei, LI Yongtao. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 823-840. DOI: 10.13203/j.whugis20220623
Citation: LIU Shuang, HU Xiangyun, GUO Ning, CAI Hongzhu, ZHANG Henglei, LI Yongtao. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 823-840. DOI: 10.13203/j.whugis20220623

Overview on UAV Aeromagnetic Survey Technology

More Information
  • Received Date: September 22, 2022
  • Available Online: February 07, 2023
  • Published Date: June 04, 2023
  • Unmanned aerial vehicle (UAV) aeromagnetic measurement, as an efficient, convenient and low-cost geophysical exploration method, has been widely used in geological survey, mineral resources exploration, and engineering prospecting. First, we outline the historical process of UAV aeromagnetic measurement systems in the past two decades. The domestic and international progress of research and development, and the application of UAV aeromagnetic measurement are summarized. We compare the advantages and disadvantages of three main types of UAV flight platforms and their application scenarios in the field of aeromagnetic measurement. The types and characteristics of UAV aerial magnetometers are analyzed. Second, we carefully discuss the interference problem of aeromagnetic measurement. The principle of aeromagnetic compensation is mathematically described. The applications of various aeromagnetic measurement compensation methods are discussed. The characteristics of UAV electromagnetic interference and related suppression methods are summarized. The relevant ways to further improve the accuracy of UAV aeromagnetic measurement on the basis of traditional magnetic compensation are pointed out. Finally, the typical application cases of UAV aeromagnetic measurement technology are shown and the challenges and developments of UAV aeromagnetic measurement technology are foreseen.
  • [1]
    熊盛青. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 2020, 26(5): 791-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005012.htm

    Xiong Shengqing. Innovation and Application of Airborne Geophysical Exploration Technology[J]. Journal of Geomechanics, 2020, 26(5): 791-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005012.htm
    [2]
    Shirman B, Rybakov M, Beyth M, et al. Deep Structure of the Mount Amram Igneous Complex, Interpretation of Magnetic and Gravity Data[J]. Geophysical Journal International, 2015, 200(3): 1362-1373. doi: 10.1093/gji/ggu461
    [3]
    李筱, 佟晶, 张婉, 等. 航空地球物理勘探在南极调查中的应用[J]. 物探与化探, 2022, 46(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201002.htm

    Li Xiao, Tong Jing, Zhang Wan, et al. Application of Airborne Geophysical Survey in Antarctica[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201002.htm
    [4]
    陈斌, 熊盛青, 赵百民. 航空磁测飞行高度的初步研究[J]. 地球物理学进展, 2010, 25(3): 957-961. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201003035.htm

    Chen Bin, Xiong Shengqing, Zhao Baimin. The Preliminary Study on Flight Altitude of Aero-magnetic Survey[J]. Progress in Geophysics, 2010, 25(3): 957-961. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201003035.htm
    [5]
    李腾, 张宝钢, 程晓, 等. 无人机在南极科学研究的应用: 进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(5): 651-664. doi: 10.13203/j.whugis20200098

    Li Teng, Zhang Baogang, Cheng Xiao, et al. Applications of UAVs in Antarctic Scientific Research: Progress and Prospect[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 651-664. doi: 10.13203/j.whugis20200098
    [6]
    Erdelj M, Krol M, Natalizio E. Wireless Sensor Networks and Multi-UAV Systems for Natural Disaster Management[J]. Computer Networks, 2017, 124: 72-86. doi: 10.1016/j.comnet.2017.05.021
    [7]
    Johnston D W. Unoccupied Aircraft Systems in Marine Science and Conservation[J]. Annual Review of Marine Science, 2019, 11: 439-463. doi: 10.1146/annurev-marine-010318-095323
    [8]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513. doi: 10.13203/j.whugis20140045

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513. doi: 10.13203/j.whugis20140045
    [9]
    Motlagh N H, Taleb T, Arouk O. Low-altitude Unmanned Aerial Vehicles-based Internet of Things Services: Comprehensive Survey and Future Perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6): 899-922. doi: 10.1109/JIOT.2016.2612119
    [10]
    Bian J, Wang X, Gao S. Experimental Aeromagnetic Survey Using a Rotary-wing Aircraft System: A Case Study in Heizhugou, Sichuan, China[J]. Journal of Applied Geophysics, 2021, 184: 104245. doi: 10.1016/j.jappgeo.2020.104245
    [11]
    于长春, 范正国, 王乃东, 等. 高分辨率航磁方法及在大冶铁矿区的应用[J]. 地球物理学进展, 2007, 22(3): 979-983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703047.htm

    Yu Changchun, Fan Zhengguo, Wang Naidong, et al. High-resolution Aeromagnetic Exploration Methods and Their Application in Daye Iron Mines[J]. Progress in Geophysics, 2007, 22(3): 979-983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703047.htm
    [12]
    Koyama T, Kaneko T, Ohminato T, et al. An Aeromagnetic Survey of Shinmoe-dake Volcano, Kirishima, Japan, After the 2011 Eruption Using an Unmanned Autonomous Helicopter[J]. Earth, Planets and Space, 2013, 65(6): 657-666. doi: 10.5047/eps.2013.03.005
    [13]
    Stoll J B. Unmanned Aircraft Systems for Rapid Near Surface Geophysical Measurements[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-1/W2(1): 391-394.
    [14]
    Pei Y L, Liu B H, Hua Q F, et al. An Aeromagnetic Survey System Based on an Unmanned Autonomous Helicopter: Development, Experiment, and Analysis[J]. International Journal of Remote Sensing, 2017, 38(8-10): 3068-3083. doi: 10.1080/01431161.2016.1274448
    [15]
    Jiang D D, Zeng Z F, Zhou S, et al. Integration of an Aeromagnetic Measurement System Based on an Unmanned Aerial Vehicle Platform and Its Application in the Exploration of the Ma'anshan Magnetite Deposit[J]. IEEE Access, 2020, 8: 189576-189586. doi: 10.1109/ACCESS.2020.3031395
    [16]
    Martelet G, Gloaguen E, Døssing A, et al. Airborne/UAV Multisensor Surveys Enhance the Geological Mapping and 3D Model of a Pseudo-skarn Deposit in Ploumanac'h, French Brittany[J]. Minerals, 2021, 11(11): 1259. doi: 10.3390/min11111259
    [17]
    张文杰, 杨生, 郭刚, 等. 轻型无人机航磁调查系统及在矿产勘查中的应用前景[J]. 矿产勘查, 2021, 12(4): 989-999. doi: 10.3969/j.issn.1674-7801.2021.04.021

    Zhang Wenjie, Yang Sheng, Guo Gang, et al. The Application Prospect of Light UAV Aeromagnetic Survey in Mineral Exploration[J]. Mineral Exploration, 2021, 12(4): 989-999. doi: 10.3969/j.issn.1674-7801.2021.04.021
    [18]
    张富明, 温建亮, 赵兴辉, 等. 无人直升机航磁测量系统的研发与应用[J]. 地球物理学进展, 2019, 34(4): 1694-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201904052.htm

    Zhang Fuming, Wen Jianliang, Zhao Xinghui, et al. Development and Application of Aeromagnetic Measurement System for Unmanned Helicopter[J]. Progress in Geophysics, 2019, 34(4): 1694-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201904052.htm
    [19]
    崔志强, 胥值礼, 孟庆敏. 国内主要航空物探飞行平台特点及发展[J]. 物探与化探, 2014, 38(6): 1107-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406002.htm

    Cui Zhiqiang, Xu Zhili, Meng Qingmin. The Features of the Main Airborne Geophysical Flying-platforms in China and the Development Trend[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1107-1113. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201406002.htm
    [20]
    Vadim T, Alexander P, Vasily A, et al. Unmanned Airborne Magnetic Survey Technologies: Present and Future[M]//Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, Cham: Springer, 2019.
    [21]
    张洪瑞, 范正国. 2000年来西方国家航空物探技术的若干进展[J]. 物探与化探, 2007, 31(1): 1-8. doi: 10.3969/j.issn.1000-8918.2007.01.001

    Zhang Hongrui, Fan Zhengguo. Recent Advances in Aerogeophysical Techniques Used Abroad[J]. Geophysical and Geochemical Exploration, 2007, 31(1): 1-8. doi: 10.3969/j.issn.1000-8918.2007.01.001
    [22]
    崔志强, 胥值礼, 李军峰, 等. 无人机航空物探技术研发应用现状与展望[J]. 物探化探计算技术, 2016, 38(6): 740-745. doi: 10.3969/j.issn.1001-1749.2016.06.05

    Cui Zhiqiang, Xu Zhili, Li Junfeng, et al. Status and Prospect of Research and Development and Application of UAV Airborne Geophysical Exploration Technology[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(6): 740-745. doi: 10.3969/j.issn.1001-1749.2016.06.05
    [23]
    吴太旗, 徐修明, 任来平, 等. 无人机海洋航磁测量技术进展与展望[J]. 海洋测绘, 2017, 37(6): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201706005.htm

    Wu Taiqi, Xu Xiuming, Ren Laiping, et al. Progresses and Perspectives of Marine Aeromagnetic Technology in UAV[J]. Hydrographic Surveying and Charting, 2017, 37(6): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201706005.htm
    [24]
    Barnard J A. The Use of Unmanned Aircraft in Oil, Gas and Mineral E+P Activities[J]. SEG Technical Program Expanded Abstracts, 2008, 27(1): 3713.
    [25]
    Funaki M, Higashino S I, Sakanaka S, et al. Small Unmanned Aerial Vehicles for Aeromagnetic Surveys and Their Flights in the South Shetland Islands, Antarctica[J]. Polar Science, 2014, 8(4): 342-356. doi: 10.1016/j.polar.2014.07.001
    [26]
    Parshin A V, Morozov V A, Blinov A V, et al. Low-altitude Geophysical Magnetic Prospecting Based on Multirotor UAV as a Promising Replacement for Traditional Ground Survey[J]. Geo⁃Spatial Information Science, 2018, 21(1): 67-74.
    [27]
    Walter C, Braun A, Fotopoulos G. High-resolution Unmanned Aerial Vehicle Aeromagnetic Surveys for Mineral Exploration Targets[J]. Geophysical Prospecting, 2020, 68(1): 334-349. doi: 10.1111/1365-2478.12914
    [28]
    李文杰, 李军峰, 刘世凯, 等. 自主技术无人机航空物探(磁/放)综合站研发进展[J]. 地球学报, 2014, 35(4): 399-403. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404001.htm

    Li Wenjie, Li Junfeng, Liu Shikai, et al. The Pro-gress in the Development of the Integrated UAV Magnetic & Radiation Survey System[J]. Acta Geoscientica Sinica, 2014, 35(4): 399-403. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404001.htm
    [29]
    李军峰, 李文杰, 秦绪文, 等. 新型无人机航磁系统在多宝山矿区的应用试验[J]. 物探与化探, 2014, 38(4): 846-850. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201404039.htm

    Li Junfeng, Li Wenjie, Qin Xuwen, et al. Trial Survey of a Novel UAV-borne Magnetic System in the Duobaoshan Ore District[J]. Geophysical and Geochemical Exploration, 2014, 38(4): 846-850. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201404039.htm
    [30]
    李飞, 丁志强, 崔志强, 等. CH-3无人机航磁测量系统在我国新疆不同地形区的应用示范[J]. 地质与勘探, 2018, 54(4): 735-746. doi: 10.3969/j.issn.0495-5331.2018.04.007

    Li Fei, Ding Zhiqiang, Cui Zhiqiang, et al. Application Demonstration of the CH-3 UAV-borne Magnetic Survey System in Different Terrain Areas of Xinjiang[J]. Geology and Exploration, 2018, 54(4): 735-746. doi: 10.3969/j.issn.0495-5331.2018.04.007
    [31]
    鞠星, 牛海波, 郭华, 等. 彩虹4无人机航磁测量系统的安全分析与质量评价[J]. 地球物理学进展, 2020, 35(4): 1565-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004043.htm

    Ju Xing, Niu Haibo, Guo Hua, et al. Safety Analysis and Quality Evaluation of the Aeromagnetic Measurement System of CH- 4 UAV[J]. Progress in Geophysics, 2020, 35(4): 1565-1571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004043.htm
    [32]
    李志鹏, 高嵩, 王绪本. 特殊区域旋翼无人机航磁测量研究[J]. 地球物理学报, 2018, 61(9): 3825-3834. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809029.htm

    Li Zhipeng, Gao Song, Wang Xuben. New Method of Aeromagnetic Surveys with Rotorcraft UAV in Particular Areas[J]. Chinese Journal of Geophysics, 2018, 61(9): 3825-3834. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809029.htm
    [33]
    武雪山, 黄松, 于昌明, 等. 旋翼无人机航磁测量系统在备战铁矿的应用[J]. 新疆地质, 2021, 39(4): 667-670. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202104023.htm

    Wu Xueshan, Huang Song, Yu Changming, et al. Application of Rotorcraft UAV Aeromagnetic Measurement System in Beizhan Iron Depsit[J]. Xinjiang Geology, 2021, 39(4): 667-670. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202104023.htm
    [34]
    Liu Jianxin, Liu Huipeng, Liu Rong, et al. Aeromagnetic Survey Using a Multirotor UAV: A Case Study in Jinping, Yunnan, China[J]. Transactions of Nonferrous Metals Society of China, 2022, 4: 1-18.
    [35]
    周普志, 汤民强, 刘迪仁, 等. 新型国产无人机航磁系统的应用研究[J]. 海洋测绘, 2022, 42(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH202201007.htm

    Zhou Puzhi, Tang Minqiang, Liu Diren, et al. Application Research of New Domestic UAV Aeromagnetic System[J]. Hydrographic Surveying and Charting, 2022, 42(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH202201007.htm
    [36]
    王庆乙, 行英弟, 蒋彬, 等. MAMSS-1超低空高精度航磁系统的研制[J]. 物探与化探, 2010, 34(6): 712-716. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201006006.htm

    Wang Qingyi, Xing Yingdi, Jiang Bin, et al. The Design and Development of the MAMSS-1 Type Minimum Altitude High-Precision Aeromagnetic System[J]. Geophysical and Geochemical Exploration, 2010, 34(6): 712-716. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201006006.htm
    [37]
    安少乐, 周可法, 王金林, 等. 动力三角翼平台航磁测量系统及其在卡拉塔格勘查区的应用[J]. 地球物理学进展, 2019, 34(3): 1170-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903039.htm

    An Shaole, Zhou Kefa, Wang Jinlin, et al. Aeromagnetic Survey System with Dynamic Delta Wing and Its Applications in Kalatage Exploration Area[J]. Progress in Geophysics, 2019, 34(3): 1170-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903039.htm
    [38]
    Singhal G, Bansod B, Mathew L. Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review[J]. Preprints, 2018, DOI: 10.20944/preprints201811.0601.v1.
    [39]
    Kim B, Lee S, Park G, et al. Development of an Unmanned Airship for Magnetic Exploration[J]. Exploration Geophysics, 2021, 52(4): 462-467. doi: 10.1080/08123985.2020.1827949
    [40]
    于显利, 刘顺安, 刘佳琳. 无人机在地球物理探测中的应用[J]. 中国矿业, 2012, 21(7): 107-109. doi: 10.3969/j.issn.1004-4051.2012.07.031

    Yu Xianli, Liu Shun'an, Liu Jialin. Application of Unmanned Aerial Vehicle for Geophysical Surveying[J]. China Mining Magazine, 2012, 21(7): 107-109. doi: 10.3969/j.issn.1004-4051.2012.07.031
    [41]
    崔志强, 李飞, 胥值礼. 彩虹-Ⅲ型无人机航空磁测系统应用示范效果评述[J]. 物探化探计算技术, 2019, 41(6): 787-797. doi: 10.3969/j.issn.1001-1749.2019.06.13

    Cui Zhiqiang, Li Fei, Xu Zhili. Application Effect Evaluation of the Rainbow-3 UAV Aeromagnetic Survey System[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(6): 787-797. doi: 10.3969/j.issn.1001-1749.2019.06.13
    [42]
    崔志强, 胥值礼, 孟庆敏, 等. 现行三类平台航磁勘查系统特点及勘查效果评述[J]. 物探化探计算技术, 2015, 37(4): 437-443. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201504005.htm

    Cui Zhiqiang, Xu Zhili, Meng Qingmin, et al. Review on Exploration Effect and Characteristics of Aeromagnetic Survey System Based on Current Three Types Flying-platform[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(4): 437-443. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201504005.htm
    [43]
    Wood A, Cook I, Doyle B, et al. Experimental Aeromagnetic Survey Using an Unmanned Air System[J]. The Leading Edge, 2016, 35(3): 270-273. doi: 10.1190/tle35030270.1
    [44]
    Maire P L, Bertrand L, Munschy M, et al. Aerial Magnetic Mapping with an Unmanned Aerial Vehicle and a Fluxgate Magnetometer: A New Method for Rapid Mapping and Upscaling from the Field to Regional Scale[J]. Geophysical Prospecting, 2020, 68(7): 2307-2319. doi: 10.1111/1365-2478.12991
    [45]
    王猛, 刘媛媛, 王大勇, 等. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201023.htm

    Wang Meng, Liu Yuanyuan, Wang Dayong, et al. Application Effect Analysis of UAV Aeromagnetic Survey Technology in Desert and Semidesert Regions[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202201023.htm
    [46]
    Malehmir A, Dynesius L, Paulusson K, et al. The Potential of Rotary-wing UAV-based Magnetic Surveys for Mineral Exploration: A Case Study from Central Sweden[J]. The Leading Edge, 2017, 36(7): 552-557.
    [47]
    Shahsavani H. An Aeromagnetic Survey Carried out Using a Rotary-wing UAV Equipped with a Low-cost Magneto-inductive Sensor[J]. International Journal of Remote Sensing, 2021, 42(23): 8805-8818.
    [48]
    崔志强, 胥值礼, 李飞, 等. 基于高精度航空磁测的塔西南坳陷深部地质构造研究[J]. 地质与勘探, 2020, 56(6): 1238-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202006012.htm

    Cui Zhiqiang, Xu Zhili, Li Fei, et al. Deep Geological Structure Beneath the Southwest Tarim Basin Derived from High-Precision Aeromagnetic Survey Data[J]. Geology and Exploration, 2020, 56(6): 1238-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202006012.htm
    [49]
    陆其鹄, 彭克中, 易碧金. 我国地球物理仪器的发展[J]. 地球物理学进展, 2007, 22(4): 1332-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200704044.htm

    Lu Qihu, Peng Kezhong, Yi Bijin. The Development of Geophysical Instrumentation in China[J]. Progress in Geophysics, 2007, 22(4): 1332-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200704044.htm
    [50]
    骆遥, 段树岭, 王金龙, 等. AGS-863航磁全轴梯度勘查系统关键性指标测试[J]. 物探与化探, 2011, 35(5): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201105013.htm

    Luo Yao, Duan Shuling, Wang Jinlong, et al. Key Indicators Testing for AGS-863 Three Axis Airborne Magnetic Gradiometer[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201105013.htm
    [51]
    姜智鹏, 赵伟, 屈凯峰. 磁场测量技术的发展及其应用[J]. 电测与仪表, 2008, 45(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ200804002.htm

    Jiang Zhipeng, Zhao Wei, Qu Kaifeng. Development and Application of Magnetic Field Measurement Technology[J]. Electrical Measurement & Instrumentation, 2008, 45(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ200804002.htm
    [52]
    周文月, 黄大年, 于显利, 等. 航磁测量飞机飞行姿态影响及矫正[J]. 世界地质, 2015, 34(1): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201501032.htm

    Zhou Wenyue, Huang Danian, Yu Xianli, et al. Attitude Affection and Correction of Aircraft in Airborne Survey[J]. Global Geology, 2015, 34(1): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201501032.htm
    [53]
    乔中坤, 马国庆, 周文纳, 等. 多旋翼无人机航磁系统误差综合补偿研究[J]. 地球物理学报, 2020, 63(12): 4604-4612. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202012026.htm

    Qiao Zhongkun, Ma Guoqing, Zhou Wenna, et al. Research on the Comprehensive Compensation of Aeromagnetic System Error of Multi-rotor UAV[J]. Chinese Journal of Geophysics, 2020, 63(12): 4604-4612. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202012026.htm
    [54]
    Kaneko T, Koyama T, Yasuda A, et al. Low-altitude Remote Sensing of Volcanoes Using an Unmanned Autonomous Helicopter: An Example of Aeromagnetic Observation at Izu-Oshima Volcano, Japan[J]. International Journal of Remote Sensing, 2011, 32(5): 1491-1504.
    [55]
    Cunningham M, Samson C, Laliberté J, et al. Inversion of Magnetic Data Acquired with a Rotary-wing Unmanned Aircraft System for Gold Exploration[J]. Pure and Applied Geophysics, 2021, 178(2): 501-516.
    [56]
    Glen J M G, Egger A E, Ippolito C, et al. Correlation of Geothermal Springs with Sub-surface Fault Terminations Revealed by High-Resolution, UAV-Acquired Magnetic Data[C]//Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, Stanford, USA, 2013.
    [57]
    De Smet T S, Nikulin A, Romanzo N, et al. Successful Application of Drone-based Aeromagnetic Surveys to Locate Legacy Oil and Gas Wells in Cattaraugus County, New York[J]. Journal of Applied Geophysics, 2021, 186: 104250.
    [58]
    李飞, 董浩, 崔志强, 等. 滩涂区综合地球物理调查技术在栟茶河断裂空间展布中的应用[J]. 地质与勘探, 2020, 56(3): 566-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202003009.htm

    Li Fei, Dong Hao, Cui Zhiqiang, et al. Application of Integrated Geophysical Survey Technology in the Spatial Distribution of Benchahe Fault in Rudong Mudflat Area, Jiangsu Province[J]. Geology and Exploration, 2020, 56(3): 566-579. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202003009.htm
    [59]
    Williams P M. Aeromagnetic Compensation Using Neural Networks[J]. Neural Computing & Applications, 1993, 1(3): 207-214.
    [60]
    吴佩霖, 张群英, 李光, 等. 航磁全轴总场梯度系统补偿算法研究[J]. 电子与信息学报, 2017, 39(12): 3030-3038. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201712031.htm

    Wu Peilin, Zhang Qunying, Li Guang, et al. Research on Compensation Algorithm of Three Axis Gradient Aeromagnetic Prospecting System[J]. Journal of Electronics & Information Technology, 2017, 39(12): 3030-3038. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201712031.htm
    [61]
    Ma M, Zhou Z J, Cheng D F. A Dual Estimate Method for Aeromagnetic Compensation[J]. Measurement Science and Technology, 2017, 28(11): 115904.
    [62]
    王婕, 郭子祺, 乔彦超. 固定翼无人机航磁测量系统的磁补偿问题初探[J]. 地球物理学进展, 2015, 30(6): 2931-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506064.htm

    Wang Jie, Guo Ziqi, Qiao Yanchao. Magnetic Compensation of the Fixed-wing UAV Aeromagneic Detection System[J]. Progress in Geophysics, 2015, 30(6): 2931-2937. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506064.htm
    [63]
    Mu Y X, Zhang X J, Xie W P, et al. Automatic Detection of Near-surface Targets for Unmanned Aerial Vehicle (UAV) Magnetic Survey[J]. Remote Sensing, 2020, 12(3): 452.
    [64]
    Walter C, Braun A, Fotopoulos G. Spectral Analysis of Magnetometer Swing in High-resolution UAV-borne Aeromagnetic Surveys[C]//2019 IEEE Systems and Technologies for Remote Sensing Applications Through Unmanned Aerial Systems (STRATUS), Rochester, USA, 2019.
    [65]
    Walter C, Braun A, Fotopoulos G. Characterizing Electromagnetic Interference Signals for Unmanned Aerial Vehicle Geophysical Surveys[J]. Geophysics, 2021, 86(6): 21-32.
    [66]
    Døssing A, Silva E, Martelet G, et al. A High-Speed, Light-weight Scalar Magnetometer Bird for Km Scale UAV Magnetic Surveying: On Sensor Choice, Bird Design, and Quality of Output Data[J]. Remote Sensing, 2021, 13(4): 649.
    [67]
    西永在, 吴珊, 廖桂香, 等. 无人机航空磁测在滩涂区地质调查的应用试验[J]. 物探与化探, 2021, 45(2): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202102011.htm

    Xi Yongzai, Wu Shan, Liao Guixiang, et al. An Application Test of UAV Aeromagnetic Survey in Geological Survey of the Tidal Flat Area[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202102011.htm
    [68]
    Parvar K, Braun A, Layton-Matthews D, et al. UAV Magnetometry for Chromite Exploration in the Samail Ophiolite Sequence, Oman[J]. Journal of Unmanned Vehicle Systems, 2018, 6: 57-69.
    [69]
    Kim B, Jeong S, Bang E, et al. Investigation of Iron Ore Mineral Distribution Using Aero-magnetic Exploration Techniques: Case Study at Pocheon, Korea[J]. Minerals, 2021, 11(7): 665.
    [70]
    王婕, 郭子祺, 刘建英. 固定翼无人机航磁探测系统的磁补偿模型分析[J]. 航空学报, 2016, 37(11): 3435-3443. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611021.htm

    Wang Jie, Guo Ziqi, Liu Jianying. Analysis on Magnetic Compensation Model of Fixed-wing UAV Aeromagnetic Detection System[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3435-3443. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611021.htm
    [71]
    赵双求. UAV航磁系统及补偿研究[D]. 长沙: 中南大学, 2011.

    Zhao Shuangqiu. The Study of UAV Aeromagnetic System and Compensation[D]. Changsha: Central South University, 2011.
    [72]
    朱学军. 无人机航磁测量中载体干扰磁场补偿方法研究[D]. 长沙: 国防科学技术大学, 2014.

    Zhu Xuejun. Study on the Compensation Method of Vehicle Interferential Magnetic Field in UAV Aeromagnetic Survey[D]. Changsha: National University of Defense Technology, 2014.
    [73]
    刘首善, 唐林牧, 许庆丰, 等. 航磁补偿技术及补偿质量的评价方法[J]. 海军航空工程学院学报, 2016, 31(6): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201606011.htm

    Liu Shoushan, Tang Linmu, Xu Qingfeng, et al. Investigation of Aeromagnetic Compensation Techno-logy and Performance Assessment Method[J]. Journal of Naval Aeronautical and Astronautical University, 2016, 31(6): 641-647. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201606011.htm
    [74]
    Tolles W E, Lawson J D. Magnetic Compensation of MAD Equipped Aircraft[J]. Airborne Instruments Lab, 1950, 20(1): 201.
    [75]
    孟庆奎, 周德文, 高维, 等. 国内外航磁补偿技术历史与展望[J]. 物探与化探, 2017, 41(4): 694-699. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704017.htm

    Meng Qingkui, Zhou Dewen, Gao Wei, et al. History and Prospects of Aeromagnetic Compensation Technologies Used in China and Abroad[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 694-699. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201704017.htm
    [76]
    Bickel S H. Small Signal Compensation of Magnetic Fields Resulting from Aircraft Maneuvers[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(4): 518-525.
    [77]
    Leach B W. Aeromagnetic Compensation as a Linear Regression Problem[M]//Information Linkage Between Applied Mathematics and Industry. Amsterdam: Elsevier, 1980: 139-161.
    [78]
    刘德华. 航磁测量平台磁干扰补偿算法研究[D]. 成都: 电子科技大学, 2019.

    Liu Dehua. Research on Magnetic Interference Compensation Algorithm for Aeromagnetic Measurement Platform[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [79]
    李标芳, 王振东. 飞机的磁干扰及电子补偿方法[J]. 物探与化探, 1979, 3(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH197901005.htm

    Li Biaofang, Wang Zhendong. Aircraft Magnetic Interference and Electronic Compensation Method[J]. Geophysical and Geochemical Exploration, 1979, 3(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH197901005.htm
    [80]
    曾佩韦. 机动式航磁补偿法[J]. 长春地质学院学报, 1981, 11(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198103010.htm

    Zeng Peiwei. Mobile Aeromagnetic Compensation Method[J]. Journal of Jilin University (Earth Science Edition), 1981, 11(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198103010.htm
    [81]
    何敬礼. 飞机磁场的自动补偿方法[J]. 物探与化探, 1985, 9(6): 464-469. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH198506010.htm

    He Jingli. Automatic Compensation Method of Aircraft Magnetic Field[J]. Geophysical and Geochemical Exploration, 1985, 9(6): 464-469. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH198506010.htm
    [82]
    吴文福. 16项自动磁补偿系统[J]. 声学与电子工程, 1993(4): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDG199304002.htm

    Wu Wenfu. 16 Automatic Magnetic Compensation Systems[J]. Acoustics and Eleclrical Engineering, 1993(4): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDG199304002.htm
    [83]
    李婷, 王仕成, 张金生. 磁场测量误差补偿技术综述[J]. 电光与控制, 2018, 25(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201806016.htm

    Li Ting, Wang Shicheng, Zhang Jinsheng. A Review on Geomagnetic Measurement Error Compensation Technologies[J]. Electronics Optics & Control, 2018, 25(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201806016.htm
    [84]
    Leliak P. Identification and Evaluation of Magnetic-field Sources of Magnetic Airborne Detector Equip-ped Aircraft[J]. IRE Transactions on Aerospace and Navigational Electronics, 1961, 8(3): 95-105.
    [85]
    Han X Q, Li W, Jian L, et al. Aeromagnetic Compensation of Rotor UAV Based on Least Squares[C]//Chinese Control Conference, Nanjing, China, 2018.
    [86]
    张宁, 林春生. 基于改进岭估计的飞行器背景磁干扰的建模与补偿[J]. 系统工程与电子技术, 2012, 34(5): 887-891. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201205008.htm

    Zhang Ning, Lin Chunsheng. Modeling and Compensation of Aircraft Magnetic Interference Based on Ameliorated Ridge Estimation[J]. Systems Engineering and Electronics, 2012, 34(5): 887-891. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201205008.htm
    [87]
    庞学亮, 林春生, 张宁. 飞机磁场模型系数的截断奇异值分解法估计[J]. 探测与控制学报, 2009, 31(5): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX200905010.htm

    Pang Xueliang, Lin Chunsheng, Zhang Ning. Parameter Estimation of Airplane Magnetic Model Based on Truncated Singular Value Decomposition[J]. Journal of Detection & Control, 2009, 31(5): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX200905010.htm
    [88]
    Gu B, Li Q L, Liu H Y. Aeromagnetic Compensation Based on Truncated Singular Value Decomposition with an Improved Parameter-choice Algorithm[C]//The 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 2014.
    [89]
    Zhang D L, Huang D N, Lu J W, et al. Aeromagnetic Compensation with Partial Least Square Regression[J]. ASEG Extended Abstracts, 2016, (1): 1-3.
    [90]
    Zhao G Y, Han Q, Peng X, et al. An Aeromagnetic Compensation Method Based on a Multimodel for Mitigating Multicollinearity[J]. Sensors (Basel, Switzerland), 2019, 19(13): 2931.
    [91]
    Wu P L, Zhang Q Y, Chen L Z, et al. Aeromagnetic Compensation Algorithm Based on Principal Component Analysis[J]. Journal of Sensors, 2018, 4: 1-7.
    [92]
    Zhang B G, Guo Z Q, Qiao Y C. A Simplified Aeromagnetic Compensation Model for Low Magnetism UAV Platform[C]//IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011.
    [93]
    Dou Z J, Han Q, Niu X M, et al. An Adaptive Filter for Aeromagnetic Compensation Based on Wavelet Multiresolution Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1069-1073.
    [94]
    Noriega G, Marszalkowski A. Adaptive Techniques and Other Recent Developments in Aeromagnetic Compensation[J]. First Break, 2017, 35(9): 31-38.
    [95]
    Feng Y Q, Zhang Q M, Zheng Y X, et al. An Improved Aeromagnetic Compensation Method Robust to Geomagnetic Gradient[J]. Applied Sciences, 2022, 12(3): 1490.
    [96]
    Ma M, Cheng D F, Chalup S, et al. Uncertainty Estimation in the Neural Model for Aeromagnetic Compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1942-1946.
    [97]
    Yu P, Zhao X, Jiao J, et al. An Improved Neural Network Method for Aeromagnetic Compensation[J]. Measurement Science and Technology, 2021, 32(4): 045106.
    [98]
    Jiao J, Yu P, Zhao X, et al. Real-time Aeromagnetic Compensation with Compressed and Accelerated Neural Networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [99]
    Han Q, Dou Z J, Tong X J, et al. A Modified Tolles–Lawson Model Robust to the Errors of the Three-axis Strapdown Magnetometer[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 334-338.
    [100]
    Jirigalatu M, Krishna V, Silva E, et al. Experiments on Magnetic Interference for a Portable Airborne Magnetometry System Using a Hybrid Unmanned Aerial Vehicle (UAV)[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10(1): 25-34.
    [101]
    Tuck L E, Samson C, Laliberté J, et al. Magnetic Interference Mapping of Four Types of Unmanned Aircraft Systems Intended for Aeromagnetic Surveying[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10(1): 101-112.
    [102]
    Cao Z W, Chen D S, Yu F, et al. EMI Suppression of UAV Power in Aeromagnetic Survey[J]. IEEE Electromagnetic Compatibility Magazine, 2013, 2(1): 45-53.
    [103]
    Forrester R, Huq M S, Ahmadi M, et al. Magnetic Signature Attenuation of an Unmanned Aircraft System for Aeromagnetic Survey[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4): 1436-1446.
    [104]
    Billings S, Wright D. Optimal Total-field Magnetometer Configuration for Near-surface Applications[J]. The Leading Edge, 2009, 28(5): 522-527.
    [105]
    Walter C A, Braun A, Fotopoulos G. Impact of Three-dimensional Attitude Variations of an Unmanned Aerial Vehicle Magnetometry System on Magnetic Data Quality[J]. Geophysical Prospecting, 2019, 67(2): 465-479.
    [106]
    Jackisch R, Madriz Y, Zimmermann R, et al. DroneBorne Hyperspectral and Magnetic Data Integration: Otanmäki FeTiV Deposit in Finland[J]. Remote Sensing, 2019, 11(18): 2084.
    [107]
    焦立果, 雷宇, 涂继耀, 等. 航磁异常分析技术及其在地质构造中的应用[J]. 地球与行星物理论评, 2022, 53(3): 331-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203008.htm

    Jiao Liguo, Lei Yu, Tu Jiyao, et al. A Review on the Analysis of Aeromagnetic Anomaly and Its Geological and Tectonic Applications[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(3): 331-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203008.htm
    [108]
    闫亚芬, 滕吉文, 阮小敏, 等. 龙门山和相邻地域航磁场特征与汶川大地震[J]. 地球物理学报, 2016, 59(1): 197-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201601017.htm

    Yan Yafen, Teng Jiwen, Ruan Xiaomin, et al. Aeromagnetic Field Characteristics and the Wenchuan Earthquakes in the Longmenshan Mountains and Adjacent Areas[J]. Chinese Journal of Geophysics, 2016, 59(1): 197-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201601017.htm
    [109]
    Kolawole F, Atekwana E A, Malloy S, et al. Aeromagnetic, Gravity, and Differential Interferometric Synthetic Aperture Radar Analyses Reveal the Causative Fault of the 3 April 2017 Mw 6.5 Moiyabana, Botswana, Earthquake[J]. Geophysical Research Letters, 2017, 44(17): 8837-8846.
    [110]
    Minelli L, Speranza F, Nicolosi I, et al. Aeromagnetic Investigation of the Central Apennine Seismogenic Zone (Italy): From Basins to Faults[J]. Tectonics, 2018, 37(5): 1435-1453.
    [111]
    Nikulin A, de Smet T S. A UAV-based Magnetic Survey Method to Detect and Identify Orphaned Oil and Gas Wells[J]. The Leading Edge, 2019, 38(6): 447-452.
    [112]
    樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529. doi: 10.13203/j.whugis20170177

    Fan Bangkui, Zhang Ruiyu. Unmanned Aircraft System and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1523-1529. doi: 10.13203/j.whugis20170177
    [113]
    林君, 刁庶, 张洋, 等. 地球物理矢量场磁测技术的研究进展[J]. 科学通报, 2017, 62(23): 2606-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201723008.htm

    Lin Jun, Diao Shu, Zhang Yang, et al. Research Progress of Geophysical Vector Magnetic Field Survey Technology[J]. Chinese Science Bulletin, 2017, 62(23): 2606-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201723008.htm
    [114]
    Pisciotta A, Vitale G, Scudero S, et al. A Lightweight Prototype of a Magnetometric System for Unmanned Aerial Vehicles[J]. Sensors, 2021, 21(14): 4691.
  • Related Articles

    [1]WU Chunjun, SUN Yueqiang, WANG Xianyi, BAI Weihua, MENG Xiangguang, DU Qifei, WANG Dongwei, LI Fu. Adjustment of GPS Flex Power and Its Interference Analysis Based on FY-3D Satellite[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 687-693. DOI: 10.13203/j.whugis20200569
    [2]Yin Gang, Zhang Yingtang, Shi Zhiyong, Li Zhining. Real-time Compensation Method of Magnetic Heading Perturbations Based on Magnetic Anomaly Inversion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 978-982. DOI: 10.13203/j.whugis20140260
    [3]HUANG Shuqiang, FU Zhongliang. A Channel Assignment Algorithm Based on Interference Avoiding in Wireless Mesh Networks[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 248-251.
    [4]ZHANG Bo, ZHANG Hong, WANG Ziwei, WANG Chao. Electromagnetic Model Used for Building Height Retrieval by Single High Resolution SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1460-1463.
    [5]GUO Wenfei, ZHENG Jiansheng, ZHANG Tisheng, LI Chaoran. A Space-Frequency Adaptive Processing Algorithm for GPS Radio Frequency Interference Suppression[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1348-1352.
    [6]HAN Tianzhu, CAO Jianping, LU Mingquan. Anti-interference Antenna Based Near-Far Effect Mitigation Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1222-1225.
    [7]ZHAO Yang, LI Guangxia, CHANG Jiang, LIU Yun. Research on Electromagnetic Environment of Satellite Navigation in S-band[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1213-1217.
    [8]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [9]HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, REN Laiping. On Error Compensation in Marine Magnetic Survey[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 603-606.
    [10]Li Shaoxin. Magnetic Monopoles, Maxwell's Equations and Electromagnetic Picture[J]. Geomatics and Information Science of Wuhan University, 1987, 12(3): 86-90.

Catalog

    Article views (2523) PDF downloads (625) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return