LI Lan, ZHU Feng, LIU Wanke, ZHANG Xiaohong. GNSS Pseudorange Stochastic Model for Urban Classification Scenes and Its Positioning Performance[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220598
Citation: LI Lan, ZHU Feng, LIU Wanke, ZHANG Xiaohong. GNSS Pseudorange Stochastic Model for Urban Classification Scenes and Its Positioning Performance[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220598

GNSS Pseudorange Stochastic Model for Urban Classification Scenes and Its Positioning Performance

More Information
  • Received Date: June 03, 2023
  • Available Online: July 02, 2023
  • Objective: There will be many problems such as interruption, attenuation, serious multipath error, and NLOS signals when positioning in harsh urban contexts. It’s difficult to ensure the availability, continuity, and reliability of GNSS positioning services. To improve the GNSS positioning performance in complex urban contexts, this paper proposes a method for constructing GNSS stochastic models adapting to different urban contexts. Methods: First, GNSS signal characteristics in different contexts are analyzed to reveal the significant discrepancy of GNSS signals in varied contexts. Then, dynamic reference benchmarks provided by high-precision integrated navigation equipment are used to extract pseudorange error accurately. In addition, appropriate error statistic (median) and impact factor (C/N0) are selected after tests. Finally, the GNSS stochastic models adapting to different urban contexts are constructed using C/N0 and pseudorange error. Results: The urban vehicle test shows that the stochastic model adapting to different urban contexts can effectively weaken the influence of some gross errors. Compared to elevation stochastic model, the positioning accuracy is improved by 16.76% and 16.18% in horizontal and vertical directions, and by 18.68% and 17.72% compared to the C/N0 stochastic model. Conclusions: Stochastic model reconstructed adapting to different environments can weight observations more realistic, thus improving GNSS positioning performance. This provides a new idea for resilient optimization of stochastic models in complex contexts.
  • [1]
    Liu Jingnan, Liu Hui. Continuous Operational Rreference System- Infrastructure of Urban Spatial Data[J]. Geomatics and Information Science of Wuhan University, 2003(3):259-264.(刘经南,刘晖.连续运行卫星定位服务系统——城市空间数据的基础设施[J].武汉大学学报(信息科学版),2003(3):259-264.)
    [2]
    Zhang Xiaohong, Li Xingxing, Guo Fei, Zhang Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008(8):783-787. (张小红,李星星,郭斐, 张明.GPS单频精密单点定位软件实现与精 度分 析[J].武汉 大学 学报(信息 科学 版),2008(8):783-787.)
    [3]
    Zhang Xiaohong, Ma Fujian. Review of the Development of LEO Navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica,2019,48(9):1073-1087.(张小红,马福建.低轨导航增强GNSS发展综述[J].测绘学报,2019,48(9):1073-1087.)
    [4]
    Guo Shuren, Liu Cheng, Gao Weiguang, et al. Construction and Development of Satellite Navigation Augmentation Systems[J]. GNSS World of China, 2019,44(2):1-12.(郭树人,刘成,高为广,等.卫星导航增强系统建设与发展[J].全球定位系统,2019,44(2):1-12.)
    [5]
    Alkan R, İlçi V, Ozulu M, et al. A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas[J]. Measurement, 2015, 69:1-8.
    [6]
    Yang Yuanxi. Resilient PNT Concept Frame[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(7):893-898.(杨元 喜.弹性 PNT基本框架[J].测绘学报,2018,47(7):893- 898.)
    [7]
    Yang Zhe, Dai Wujiao, Yu Wenkun. Quality analysis of GNSS data based on TEQC in different environments[J]. Journal of geodesy and geodynamics, 2010,30(5):135- 139.DOI:10.14075/j.jgg.2010.05.015. (杨哲, 戴吾 蛟,余文 坤,等.不同 观测 环境 中基 于TEQC的GNSS数据质量分析[J].大地测量与 地球 动力 学,2010,30(5):135- 139.DOI:10.14075/j.jgg.2010.05.015.)
    [8]
    Wang Tian, Zhang Shufeng, Peng Ming, et al. Feature Analysis Based on Typical Navigation Test Scenes[C]. GNSS LBS and BeiDou System Application 2016, 2016:328- 332.(王田,张书锋,彭明,等.基于导航典型测试场景的特征分析[C].卫星导航定位与北斗系统应用2016, 2016:328-332.)
    [9]
    Wang Yuze. Statistical Analysis of GNSS Signal Characteristics for Complex Urban Environment[D]. Shanghai:Shanghai Jiao Tong University,2019. (王玉泽. 面向复杂城市环境的卫星导航信号特征统计分析研究[D].上海:上海交通大学,2019.)
    [10]
    Gao H, Groves P. Improving Environment Detection by Behavior Association for Context-adaptive Navigation[J]. Navigation, 2020, 67(1).
    [11]
    Yang Yuanxi. Robust Kalman Filter for Dynamic Systems[J]. Journal of Institute of Surveying and Mapping, 1997(2):79-84.(杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997(2):79-84.)
    [12]
    Yang Yuanxi, Ren Xia, Xu Yan. Main Progress of Adaptively Robust Filter with Applications in Navigation[J]. Journal of Navigation and Positioning, 2013,1(1):9- 15.DOI:10.16547/j.cnki.10-1096.2013.01.006. (杨元喜,任夏,许艳.自适应抗差滤波理论及应 用的 主要 进展[J].导航 定位 学报,2013,1(1):9-15.DOI:10.16547/j.cnki.10- 1096.2013.01.006.)
    [13]
    Wang J, Han H, Liu F, et al. Performance Analysis of GNSS/MIMU Tight Fusion Positioning Model with Complex Scene Feature Constraints[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2):1-13.
    [14]
    Lai Qifeng, Yuan Hong, Wei Dongyan, et al. Research on GNSS/INS Integrated Positioning Method for Urban Environment Based on Context Aware[J]. Navigation Positioning and Timing, 2021,8(1):151-162.(来奇峰,袁洪,魏东 岩,等.基于 场景 检测 的城 市环 境GNSS/INS组合定位方法研究[J].导航定位与授时,2021,8(1):151-162.)
    [15]
    Li B, Lou L, Shen Y. GNSS Elevationdependent Stochastic Modeling and Its Impacts on the Statistic Testing[J]. Journal of Surveying Engineering, 2016, 142(2):04015012.
    [16]
    Zhang Z, Li B, Shen Y, et al. Site-specific Unmodeled Error Mitigation for GNSS Positioning in Urban Environments Using a Real-time Adaptive Weighting Model[J]. Remote Sensing,2018,10(7).
    [17]
    Zhang Z, Li Y, He X, et al. A composite stochastic model considering the terrain topography for real-time GNSS monitoring in canyon environments[J]. Journal of Geodesy, 2022, 96(10):1-19.
    [18]
    Li Y, Zhang Z, He X, et al. Realistic stochastic modeling considering the PDOP and its application in real-time GNSS point positioning under challenging environments[J]. Measurement, 2022:197.
    [19]
    Liu Wanke, Shi Xiang, Zhu Feng, et al. Quality Analysis of Raw GNSS Observation of Google Nexus 9 Smart Tablet Terminal[J]. Geomatics and Information Science of Wuhan University,2019,44(12):1749-1756.(刘万科, 史翔,朱锋,等.谷歌Nexus 9智能终端原始GNSS观测值的质量分析[J].武汉大学学报(信息科学版),2019,44(12):1749-1756.)
    [20]
    Guo Fei, Wu Weiwang, Zhang Xiaohong, et al. Realization and Precision Analysis of Realtime Precise Point Positioning with Android Smartphones[J]. Geomatics and Information Science of Wuhan University, 2021,46(7):1053-1062.(郭斐,吴维 旺,张小 红,等.Android智能手机实时精密单点定位软件实现及精度分析[J].武汉大学学报(信息科学版),2021,46(7):1053-1062.)
    [21]
    Feriol F, Vivet D, Watanabe Y. A Review of Environmental Context Detection for Navigation Based on Multiple Sensors.[J]. Sensors, 2020(16).
    [22]
    Xia Y, Pan S, Gao W, et al. Recurrent neural network based scenario recognition with Multi-constellation GNSS measurements on a smartphone[J]. Measurement, 2020, 153:107420-.
    [23]
    Zhu Y, Luo H, Zhao F, et al. Indoor/Outdoor Switching Detection Using Multisensor DenseNet and LSTM[J]. IEEE Internet of Things Journal, 8.
    [24]
    Adjrad M, Groves P. Enhancing Least Squares GNSS Positioning with 3D Mapping without Accurate Prior Knowledge[J]. Navigation, 2017, 64(1).
    [25]
    Zhang Zhetao. Theory and Method for Processing the GNSS Unmodeled Errors[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(7):936.(章浙涛.GNSS非模型化误差 处理 理论 与方 法[J].测绘 学报,2020,49(7):936.)
    [26]
    Dai Wujiao, Ding Xiaoli, Zhu Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Acta Geodaetica et Cartographica Sinica, 2008(7):718-722.(戴吾蛟,丁晓利,朱建军. 基于观测值质量指标的GPS观测量随机模型 分析[J].武汉 大学 学报(信息 科学 版),2008(7):718-722.)
    [27]
    Hartinger H, Brunner F. Variances of GPS Phase Observations:The SIGMA- Model[J]. GPS Solutions, 1999, 2(4):35-43.
    [28]
    Li Pan. Research on Methodology of Rapid Ambiguity Resolution for GNSS Precise Point Positioning[D].Wuhan University, 2016. (李盼. GNSS精密单点定位模糊度快速固定技术和方法研究[D].武汉大学,2016.)
    [29]
    Feng Xiaochao, Jin Guoping, Fan Jianjun, et al. experimentation and analysis of multipath effect in pseudo-range measurement of GNSS receiver[J]. Modern Electronics Technique,2013,36(5):77-81. (冯晓超,金国平,范建军,等.GNSS接收机伪距测量中的多径 效应 试验 分析[J].现代 电子 技术,2013,36(5):77-81.)
    [30]
    Yao Yibin, Zhang Bao, Yan Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. CHINESE JOURNAL OF GEOPHYSICS,2015,58(5):1492-1501. (姚宜斌,张豹,严凤,等.两种精化的对流层延迟改正模型[J].地球物理学报,2015,58(5):1492-1501.)
    [31]
    (吕明慧,李薇, 张宝成,等.联合高度角与信噪比的精化随机模型及其对高纬度精密单点定位的影响[J]. 全球定位系统,2021,46(3):15-23+53.

    Lv Minghui, Li Wei, Zhang Baocheng, et al. Refined stochastic model of combining elevation angle and SNR and its impact on precise point positioning in high latitude areas[J]. GNSS World of China,2021,46(3):15-23+53.
  • Related Articles

    [1]SHA Hongjun, YUAN Xiuxiao. State-of-the-Art Binocular Image Dense Matching Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. DOI: 10.13203/j.whugis20230037
    [2]FANG Wenjiang, LI Jingzhong. A Morphing of Linear Feature Based on Shape Context Matching[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 963-967. DOI: 10.13203/j.whugis20150674
    [3]LI Deren, LIU Laixing. Context-Aware Smart City Geospatial Web Service Composition[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 853-860. DOI: 10.13203/j.whugis20160089
    [4]AI Bo, TANG Xinming, AI Tinghua, WANG Huibing. Visualization of Spatio-Temporal Information Based on Transparency[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 229-232.
    [5]LUO An, WANG Yandong, GONG Jianya. A Semantic Matching Method for Geospatial Information Service Composition Based on Context[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 368-372.
    [6]WANG Shaoyi, DU Qingyun. Design and Implementation of Geospatial Information Services Middleware Based on Context-awareness[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 790-793.
    [7]SHI Yunfei, LI Lin, ZHANG Lingling. Framework and Its Core Contents Research of Ubiquitous Geographic Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 150-153.
    [8]SUN Min, ZHAO Xuesheng, ZHAO Renliang. Global GIS and It's Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 41-45.
    [9]HU Peng, LIU Peilan, HU Hai, YANG Chuanyong. Metric Space of Earth Information and Global GIS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 317-321.
    [10]Mai Xueliang, Zhang Zuxun, Zhang Jianqing. Global Broken Contour Connection Through Maximal Clique Graph Search Based on Relational Structural Constraints[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 101-105.

Catalog

    Article views (677) PDF downloads (152) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return