XU Rui, JI Song, SONG Jiaxuan, LI Dongzi, FAN Dazhao, LI Kai. Block Adjustment of Satellite Images Using Line-of-Sight Direction Angle Correction[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 133-143. DOI: 10.13203/j.whugis20220434
Citation: XU Rui, JI Song, SONG Jiaxuan, LI Dongzi, FAN Dazhao, LI Kai. Block Adjustment of Satellite Images Using Line-of-Sight Direction Angle Correction[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 133-143. DOI: 10.13203/j.whugis20220434

Block Adjustment of Satellite Images Using Line-of-Sight Direction Angle Correction

More Information
  • Received Date: January 28, 2023
  • Available Online: June 06, 2023
  • Objectives 

    For the satellite images with large attitude measurement error, wide field angle and weak intersection, the traditional block adjustment of rational function mode (RFM) has limited error compensation ability. Although establishing error model from the object-space can avoid the limitations, the model construction of existing methods is more complicated.

    Methods 

    First, the line-of-sight vector of image point is recovered by RFM. Then, the error model for the line-of-sight direction angle is constructed, with a number of parameters consistent with the traditional method. Finally, the model parameters are solved by block adjustment.

    Results 

    Experiments on simulated and real Gaofen-1 wide field view satellite images show that the proposed method can always maintain an image-side positioning accuracy of about 1 pixel under different angular element errors. When using 13 control points, the plane positioning accuracy can reach 12.63 m, and the elevation positioning accuracy can reach 17.20 m. Experiments on Gaofen-2 satellite images with intersection angle of only 0.05° show that this method can obtain an adjustment convergence result with an image-side positioning accuracy of 1.89 pixel.

    Conclusions 

    Compared with the traditional methods, the method using line-of-sight direction angle correction can achieve better and more stable positioning results for the satellite images with large attitude measurement errors and wide field angles, and can obtain convergence results without weak intersection detection and digital elevation model assistance in the block adjustment under weak intersection conditions.

  • [1]
    TOUTIN T.Review Article: Geometric Processing of Remote Sensing Images: Models, Algorithms and Methods[J].International Journal of Remote Sensing, 2004, 25(10): 1893-1924.
    [2]
    FRASER C. S, DIAL G, GRODECKI J. Sensor Orientation via RPCs[J]. ISPRS Journal of Photogrammetry & Remote Sensing,2006,60(3): 182-194.
    [3]
    满益云,江志军. 光学遥感卫星平面定位精度误差分析[J]. 航天返回与遥感, 2021, 42(1): 135-144.

    MAN Yiyun, JIANG Zhijun. Error Analysis for Planar Geolocation Accuracy of Optical Remote Sensing Satellites[J] Spacecraft Recovery & Remote Sensing, 2021, 42(1): 135-144.
    [4]
    GRODECKI J, DIAL G. Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials[J].Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59-68.
    [5]
    XIONG Z, ZHANG Y. A Generic Method for RPC Refinement Using Ground Control Information[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(9): 1083-1092.
    [6]
    DONG Y, LER R, FAN D, et al. A Novel RPC Bias Model for Improving the Positioning Accuracy of Satellite Images[J]. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2020, 5(2): 35-41.
    [7]
    孙佳明. 光学卫星遥感影像的严格几何模型与RFM模型组合平差研究[D].广州:广东工业大学, 2020.

    SUN Jiaming. Research on Combination Adjustment of Strict Geometric Model and RFM Model of Optical Satellite Remote Sensing Images [D]. Guangzhou: Guangdong University of Technology, 2020.
    [8]
    XIONG Z, ZHANG Y. Bundle Adjustment with Rational Polynomial Camera Models Based on Generic Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49: 190-202.
    [9]
    黄文超. 基础遥感产品系统误差补偿方法研究[D]. 武汉: 武汉大学, 2016.

    HUANG Wenchao. Research on Compensation for System Errors of Basic Satellite Products[D]. Wuhan: Wuhan University, 2016.
    [10]
    伍洋,张永生,于英,等. 一种鲁棒的RFM模型定位精度优化方法[J]. 测绘科学技术学报, 2019, 36(3): 281-286.

    WU Yang, ZHANG Yongsheng, YU Ying, et al. A Robust RFM Model Positioning Accuracy Optimization Method [J] Journal of Geomatics Science and Technology, 2019, 36(3): 281-286.
    [11]
    DI K, MA R, LI R. Rational Functions and Potential for Rigorous Sensor Model Recovery[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(1): 33-41.
    [12]
    童小华,刘世杰. 高分辨率卫星影像物理模型与有理函数模型转换[J]. 中国科技论文在线, 2008, 3(11): 793-800.

    TONG Xiaohua, LIU Shijie.Rational Polynomial Coefficients Generation and Physical Sensor Model Recovery for High Resolution Satellite Stereo Ima‑gery[J].Science Paper Online,2008,3(11): 793-800.
    [13]
    LIU S, TONG X. Transformation Between Rational Function Model and Rigorous Sensor Model for High Resolution Satellite Imagery[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B1): 873-878.
    [14]
    HUANG W, ZHANG G, LI D. Robust Approach for Recovery of Rigorous Sensor Model Using Rational Function Model[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(7):4355-4361.
    [15]
    周瑜. 基于李代数的高分辨率卫星遥感影像定位理论与方法研究[D]. 郑州: 信息工程大学, 2020.

    ZHOU Yu.Theory and Method Study of Geopositioning for High-Resolution Satellite Imageries Based on Lie Algebra[D]. Zhengzhou: Information Engineering University, 2020.
    [16]
    CAO H,TAO P,LIU Y,et al.Nonlinear Systematic Distortions Compensation in Satellite Images Based on an Equivalent Geometric Sensor Model Recovered from RPCs[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:12088-12102.
    [17]
    MARI R, FRANCHIS C D, MEINHARDT-LLOPIS E, et al. To Bundle Adjust or Not: A Comparison of Relative Geolocation Correction Strategies for Satellite Multi-View Stereo[C]//IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea, 2019.
    [18]
    MARI R, FRANCHIS C D, MEINHARDT-LLOPIS E, et al.A Generic Bundle Adjustment Metho‑dology for Indirect RPC Model Refinement of Satellite Imagery[J]. Image Processing on Line, 2021, 11: 344-373.
    [19]
    戴激光,贾永红,宋伟东,等. 一种异源高分辨率卫星遥感影像近似核线生成算法[J]. 武汉大学学报(信息科学版), 2013, 38(6): 661-664.

    DAI Jiguang, JIA Yonghong, SONG Weidong, et al. A New Algorithm on Approximate Epipolar Generation Between Multi-source High Satellite Imagery [J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 661-664.
    [20]
    吕志平,乔书波. 大地测量学基础[M]. 北京:测绘出版社, 2010.

    Zhiping LÜ, QIAO Shubo. Fundamentals of Geodesy [M]. Beijing: Publishing House of Surveying and Mapping, 2010.
    [21]
    袁修孝,余翔. 高分辨率卫星遥感影像姿态角系统误差检校[J]. 测绘学报, 2012, 41(3): 385-392.

    YUAN Xiuxiao, YU Xiang. Calibration of Angular Systematic Errors for High Resolution Satellite Ima‑gery[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(3) :385-392.
    [22]
    TAO C, HU Y. Comprehensive Study of the Rational Function Model for Photogrammetric Processing[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(12): 1347-1357.
    [23]
    曹金山,袁修孝. 利用虚拟格网系统误差补偿进行RPC参数精化[J]. 武汉大学学报(信息科学版), 2011, 36(2): 185-189.

    CAO Jinshan, YUAN Xiuxiao. Refined RPC Parameters by Virtual Grid System Error Compensation[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 185-189.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return