Citation: | TANG Lei, QIU Zehua, LI Yujiang, LI Yu, FAN Junyi. Determination and Analysis of Near-Surface Stress-Strain State of 4-Component Borehole Strainmeter[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 63-73. DOI: 10.13203/j.whugis20220397 |
Data on near-surface continuous crustal strain variation are produced in large quantities by the 4-component borehole strainmeter, but correct analysis is needed when using these data.
Based on the mechanical conversion method of 4-component borehole strainmeter, we propose a method to determine the stress-strain state by using 4-component borehole strain observations under three stress environments: Tension-compression stress, tension stress, and compression stress.
Taking the M 6.9 Menyuan earthquake in Qinghai Province, China as an example, we investigate the background stress-strain state near the epicenter by the proposed method. The results show that the stress-strain concentration area may have strain tension near the surface. After analyzing the dynamic change of the strain direction of the Menyuan station, we suggest that the increasing rate of the strain direction change that occurred five days before the earthquake was an anomaly before the earthquake. Following the comparison between the coseismic strain state measured by the borehole strainmeter and the modeled results according to elastic dislocation theory, the results show that the observed results are in good agreement with the modeled results.
The application analysis shows that the proposed method to determine the stress-strain state of borehole area is feasible and effective.
[1] |
SACKS I S, SUYEHIRO S, EVERTSON D W. Sacks-Evertson Strainmeter, Its Installation in Japan and Some Preliminary Results Concerning Strain Steps[J]. Proceedings of the Japan Academy,1971,47(9): 707-712.
|
[2] |
欧阳祖熙, 张宗润, 舒桂林. 中国西部钻孔应变仪台网工作回顾与前瞻[J]. 岩石力学与工程学报, 2004, 23(23): 4058-4062.
OUYANG Zuxi, ZHANG Zongrun, SHU Guilin. Review and Outlook for West China Borehole Strainmeter Networks[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(23): 4058-4062.
|
[3] |
苏恺之.液位型体积式应变仪的工作原理[J].地震科学研究, 1982(4): 57.
SU Kaizhi.Working Principle of Liquid Level Volumetric Strain Gauge[J].Seismological Research, 1982(4): 57.
|
[4] |
池顺良. 用于地层应力-应变观测的压容式钻孔应变仪[J]. 地震, 1985, 5(3): 18-22.
CHI Shunliang. Pressure Capacitive Borehole Strain Gauge for Formation Stress-Strain Observation [J]. Earthquake, 1985, 5(3): 18-22.
|
[5] |
GLADWIN M T, GWYTHER R L, HART R H G,et al.Measurements of the Strain Field Associated with Episodic Creep Events on the San Andreas Fault at San Juan Bautista, California[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4559-4565.
|
[6] |
ISHII H. Development of New Multi-component Borehole Instrument[R]. Ranmaru City, Japan: Report of Tono Research Institute of Earthquake Scien‑ce,2001.
|
[7] |
LINDE A T, GLADWIN M T, JOHNSTON M J S, et al. A Slow Earthquake Sequence on the San Andreas Fault[J]. Nature, 1996, 383: 65-68.
|
[8] |
BARBOUR A J, AGNEW D C, WYATT F K. Coseismic Strains on Plate Boundary Observatory Borehole Strainmeters in Southern California[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 431-444.
|
[9] |
GONG Z, JING Y, LI H B, et al. Static-Dynamic Strain Response to the 2016 M 6.2 Hutubi Earthquake (Eastern Tien Shan, NW China) Recorded in a Borehole Strainmeter Network[J]. Journal of Asian Earth Sciences, 2019, 183: 103958.
|
[10] |
吕品姬, 李正媛, 孙伶俐, 等. 2022年汤加火山喷发对中国大陆地应变观测的影响分析[J]. 武汉大学学报(信息科学版), 2022, 47(6): 927-933.
Pinji LÜ, LI Zhengyuan, SUN Lingli, et al. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933.
|
[11] |
石耀霖, 范桃园. 地应力观测井中元件标定及应力场计算方法[J]. 地震, 2000, 20(2): 101-106.
SHI Yaolin, FAN Taoyuan. Borehole in Situ Calibration of Stress Sensors and Calculation of Variation of Stress Field During Long Term Observation[J]. Earthquake, 2000, 20(2): 101-106.
|
[12] |
QIU Z H, TANG L, ZHANG B H, et al. In Situ Calibration of and Algorithm for Strain Monitoring Using Four-Gauge Borehole Strainmeters (FGBS)[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1609-1618.
|
[13] |
唐磊, 邱泽华, 宋茉. 钻孔四分量应变观测自检内精度分析[J]. 大地测量与地球动力学, 2010, 30(S2): 36-39.
TANG Lei, QIU Zehua, SONG Mo. Self-test Accuracy of 4-Component Borehole Strain Observation[J]. Journal of Geodesy and Geodynamics, 2010, 30(S2): 36-39.
|
[14] |
邱泽华, 张宝红, 池顺良, 等. 汶川地震前姑咱台观测的异常应变变化[J]. 中国科学: 地球科学, 2010, 40(8): 1031-1039.
QIU Zehua, ZHANG Baohong, CHI Shunliang, et al. Abnormal Strain Changes Observed at Guzan Station Before Wenchuan Earthquake[J]. Scientia Sinica (Terrae), 2010, 40(8): 1031-1039.
|
[15] |
刘琦, 张晶, 池顺良, 等. 2013年芦山Ms 7.0地震前后姑咱台四分量钻孔应变时频特征分析[J]. 地震学报, 2014, 36(5): 770-779.
LIU Qi, ZHANG Jing, CHI Shunliang, et al. Time-Frequency Characteristics of Four-Component Borehole Strain at Guzan Station Before and After 2013 Lushan Ms7.0 Earthquake[J]. Acta Seismologica Sinica, 2014, 36(5): 770-779.
|
[16] |
李玉丽, 安黎霞, 李启雷, 等.格尔木地震台钻孔应变仪映震性能分析[J].地震研究, 2014,37(S1): 83-87.
LI Yuli, AN Lixia, LI Qilei, et al.Analysis on Earthquake Response Ability of the Borehole Strain Meter in Golmud Seismic Station[J].Journal of Seismological Research, 2014,37(S1): 83-87.
|
[17] |
师娅芳, 孙宗强, 师家升, 等. 滇黔地区钻孔应变观测记震能力研究[J]. 国际地震动态, 2015, 45(1): 8-14.
SHI Yafang, SUN Zongqiang, SHI Jiasheng, et al. Research on the Earthquake Responding Ability of Borehole Strain Observation in Yunnan-Guizhou Region, China[J]. Recent Developments in World Seismology, 2015, 45(1): 8-14.
|
[18] |
邱泽华, 石耀霖. 观测应变阶在地震应力触发研究中的应用[J]. 地震学报, 2004, 26(5):481-488.
QIU Zehua, SHI Yaolin.Application of Observed Strain Steps to the Study of Remote Earthquake Stress Triggering[J]. Acta Seismologica Sinica, 2004, 26(5): 481-488.
|
[19] |
唐磊,邱泽华,郭燕平,等.日本9.0级地震引起的应变阶分析[J].地震地磁观测与研究, 2011,32(6): 13-16.
TANG Lei, QIU Zehua, GUO Yanping, et al. An Analysis on Strain Step Caused by Ms
|
[20] |
唐磊, 荆燕.川滇地区钻孔四分量应变仪记录的同震应变阶分析[J].震灾防御技术, 2013,8(4): 370-376.
TANG Lei, JING Yan.Analysis of Coseismic Strain Step Observed by 4-Component Borehole Strain Meters in Sichuan-Yunnan Region[J].Technology for Earthquake Disaster Prevention, 2013,8(4):370-376.
|
[21] |
董培育, 任天翔, 杨少华, 等.钻孔应变观测同震阶变时的一个问题及对策分析[J].地质力学学报, 2015,21(3):359-370.
DONG Peiyu, REN Tianxiang, YANG Shaohua, et al. A Problem and Explanation for Borehole Strain Meter Records of Co-seismic Strain Steps[J].Journal of Geomechanics, 2015,21(3): 359-370.
|
[22] |
李富珍, 张怀, 唐磊, 等.基于钻孔应变地震波记录确定地震面波应变震级[J]. 地球物理学报, 2021,64(5): 1620-1631.
LI Fuzhen, ZHANG Huai, TANG Lei, et al.Determination of Seismic Surface Wave Strain Magnitude Based on Borehole Strain Seismic Wave Records[J].Chinese Journal of Geophysics,2021,64(5): 1620-1631.
|
[23] |
龚正, 李海兵, 荆燕, 等. 2016年M
GONG Zheng, LI Haibing, JING Yan, et al.Seismogenic Structure of the 2016 M
|
[24] |
LI Y J, ZHANG H P, TANG L,et al.Seismogenic Faulting of the 2016 Mw 6.0 Hutubi Earthquake in the Northern Tien Shan Region: Constraints from Near-Field Borehole Strain Step Observations and Numerical Simulations[J].Frontiers in Earth Scien‑ce,2020,8:588304.
|
[25] |
邱泽华,唐磊,郭燕平,等.用四分量钻孔应变仪观测构造应变速率[J].地球物理学进展,2020,35(5):1688-1701.
QIU Zehua,TANG Lei,GUO Yanping,et al.Observing Tectonic Strain Rates using Four-Gauge-Borehole-Strainmeters(FGBS)[J].Progress in Geophysics, 2020, 35(5):1688-1701.
|
[26] |
张凌空, 牛安福, 吴利军.地壳应变场观测中体应变与面应变转换系数的计算[J]. 地震学报, 2012,34(4):476-486.
ZHANG Lingkong, NIU Anfu,WU Lijun.Conversion Factors from Volume to Area Strain in Crustal Strain Observation[J].Acta Seismologica Sinica, 2012,34(4): 476-486.
|
[27] |
李富珍,任天翔,池顺良,等.基于钻孔应变观测资料分析远震造成的动态库仑应力变化[J].地球物理学报,2021,64(6): 1949-1974.
LI Fuzhen, REN Tianxiang, CHI Shunliang, et al.The Dynamic Coulomb Stress Changes Caused by Remote Earthquakes Based on the Borehole Strainmeter Data[J].Chinese Journal of Geophysics, 2021,64(6):1949-1974.
|
[28] |
石耀霖, 尹迪, 任天翔, 等.首次直接观测到与理论预测一致的同震静态应力偏量变化: 2016年4月7日山西原平ML
SHI Yaolin, YIN Di, REN Tianxiang,et al.The Variation of Coseismic Static Stress Deviation Consistent with Theoretical Prediction was Observed for the First Time: Observation of Borehole Strain of the Yuanping ML
|
[29] |
邱泽华. 钻孔应变观测理论和应用[M]. 北京: 地震出版社, 2017.
QIU Zehua.Borehole Strain Observation, Theory and Application[M]. Beijing: Seismological Press, 2017.
|
[30] |
韩立波. 2022年青海门源Ms 6.9 地震震源机制解[J]. 地震科学进展, 2022, 52(2): 49-54.
HAN Libo. Focal Mechanism of 2022 Menyuan Ms 6.9 Earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022,52(2): 49-54.
|
[31] |
许英才,郭祥云,冯丽丽. 2022年1月8日青海门源Ms 6.9地震序列重定位和震源机制解研究[J].地震学报,2022,44(2):195-210.
XU Yingcai,GUO Xiangyun,FENG Lili.Relocation and Focal Mechanism Solutions of the Ms
|
[32] |
李智敏,盖海龙,李鑫,等.2022年青海门源Ms
LI Zhimin, GAI Hailong, LI Xin,et al.Seismogenic Fault and Coseismic Surface Deformation of the Menyuan Ms
|
[33] |
LI Y S, JIANG W L, LI Y J, et al. Coseismic Rupture Model and Tectonic Implications of the January 7, 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation[J]. Remote Sensing, 2022,14(9):2111.
|
[34] |
OKADA Y.Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985,75(4):1135-1154.
|
[35] |
WANG R J, LORENZO-MARTÍN F, ROTH F.PSGRN/PSCMP: A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory[J].Computers & Geoscien‑ces, 2006,32(4): 527-541.
|
[36] |
李煜航, 梁诗明, 郝明, 等. 2022年1月8日门源Ms 6.9地震同震位移场及其发震断层形变破裂特征[J]. 地球物理学报, 2023,66(2):589-601.
LI Yuhang,LIANG Shiming,HAO Ming,et al.Coseismic Displacement Field of Menyuan Ms
|
[1] | LI Zuo-lin, XIANG Long-gang, YU Lie-bing, WU Hua-yi, GUAN Xue-feng. Distributed Join Query Method for Large-Scale Spatial Data Streams[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230040 |
[2] | WANG Yufeng, WANG Juan. Spatiotemporal Differentiation Structure Evolution of Population and Land in Zhejiang Urban Agglomeration[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 280-286. DOI: 10.13203/j.whugis20200221 |
[3] | ZHANG Lin, LI Xi. Analysis on Disparity of Regional Development in Pakistan Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 269-279. DOI: 10.13203/j.whugis20210057 |
[4] | XU Huimin, HU Shougeng. Chinese City Size Evolution Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49. DOI: 10.13203/j.whugis20190330 |
[5] | DENG Caiqun, LIU Zhaoli. A Two-Dimensional Spatial Distribution Model for the Positioning Random Error of GPS RTK[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1056-1062. DOI: 10.13203/j.whugis20160254 |
[6] | Chen Zhengsheng, Lv Zhiping, Cui Yang, Wang Yupu. Implementation of Distributed Computing with Large-Scale GLASS Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 384-389. |
[7] | QIN Chengzhi, ZHU Axing, LI Baolin, PEI Tao. Taxonomy of Slope Positions and Quantification of Their Spatial Distribution Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 374-377. |
[8] | XIAO Liping, MENG Hui, LI Deyi. Approach to Node Ranking in a Netwrok Based on Topology Potential[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 379-383. |
[9] | Li Wenlan, James C. M. Li. The Effect Of Grain Size On Fracture Toughness[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 79-91. |
[10] | XU Xiaojian, YE Lejia, KANG Zhizhong, JIANG Wenchen, LUAN Dong, ZHANG Dongya. The Identification of Secondary Craters based on the Distribution of Iron Element on Lunar Surface[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200345 |