Citation: | WU Tianjun, LUO Jiancheng, ZHAO Xin, LI Manjia, ZHANG Xin, DONG Wen, GAO Lijing, WANG Lingyu, YANG Yingpin, ZHAO Wei. Collaborative Computing of High-Resolution Remote Sensing Driven by Fine-Accurate Geographic Applications[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1220-1235. DOI: 10.13203/j.whugis20220335 |
[1] |
周成虎, 骆剑承. 高分辨率卫星遥感影像地学计算[M]. 北京: 科学出版社, 2009
Zhou Chenghu, Luo Jiancheng. Geoscience Calculation of High Resolution Satellite Remote Sensing Image [M]. Beijing: Science Press, 2009
|
[2] |
李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学: 地球科学, 2012, 42(6): 805-813 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206004.htm
Li Deren, Tong Qingxi, Li Rongxing, et al. Current Issues in High-Resolution Earth Observation Technology[J]. Scientia Sinica (Terrae), 2012, 42 (6): 805-813 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206004.htm
|
[3] |
李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211-1216 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412002.htm
Li Deren, Zhang Liangpei, Xia Guisong. Automatic Analysis and Mining of Remote Sensing Big Data [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211-1216 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412002.htm
|
[4] |
李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报·信息科学版, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526
Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain [J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526
|
[5] |
张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报·信息科学版, 2018, 43 (12): 1861-1871 doi: 10.13203/j.whugis20180172
Zhang Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43 (12): 1861-1871 doi: 10.13203/j.whugis20180172
|
[6] |
吴田军, 马江洪. 历史解译知识引导下组合遥感图谱特征的变化检测方法[J]. 地球信息科学学报, 2016, 18(5): 655-663 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201605012.htm
Wu Tianjun, Ma Jianghong. A Remote Sensing Change Detection Method Combining with Spatial-Spectral Features Under the Guidance of Historical Interpretation Knowledge[J]. Journal of Geo-Information Science, 2016, 18(5): 655-663 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201605012.htm
|
[7] |
骆剑承, 吴田军, 夏列钢. 遥感图谱认知理论与计算[J]. 地球信息科学学报, 2016, 18(5): 578-589 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201605003.htm
Luo Jiancheng, Wu Tianjun, Xia Liegang. The Theory and Calculation of Spatial-Spectral Cognition of Remote Sensing[J]. Journal of Geo-Information Science, 2016, 18(5): 578-589 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201605003.htm
|
[8] |
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101004.htm
Wang Zhihua, Yang Xiaomei, Zhou Chenghu. Geographic Knowledge Graph for Remote Sensing Big Data[J]. Journal of Geo-Information Science, 2021, 23(1): 16-28 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101004.htm
|
[9] |
张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020, 22(4): 653-661 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004003.htm
Zhang Hongyan, Zhou Chenghu, Lü Guonian, et al. The Connotation and Inheritance of Geo-Information Tupu[J]. Journal of Geo-Information Science, 2020, 22(4): 653-661 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004003.htm
|
[10] |
刘瑜, 郭浩, 李海峰, 等. 从地理规律到地理空间人工智能[J]. 测绘学报, 2022, 51(6): 1062-1069 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206024.htm
Liu Yu, Guo Hao, Li Haifeng, et al. A Note on GeoAI from the Perspective of Geographical Laws [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1062-1069 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206024.htm
|
[11] |
Toth C, Jóźków G. Remote Sensing Platforms and Sensors: A Survey[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 22-36 doi: 10.1016/j.isprsjprs.2015.10.004
|
[12] |
刘建波, 马勇, 武易天, 等. 遥感高时空融合方法的研究进展及应用现状[J]. 遥感学报, 2016, 20(5): 1038-1049 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605030.htm
Liu Jianbo, Ma Yong, Wu Yitian, et al. Review of Methods and Applications of High Spatiotemporal Fusion of Remote Sensing Data[J]. Journal of Remote Sensing, 2016, 20(5): 1038-1049 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201605030.htm
|
[13] |
Li Z P, Shi H, Vogelmann J E, et al. Assessment of Fire Fuel Load Dynamics in Shrubland Ecosystems in the Western United States Using MODIS Products[J]. Remote Sensing, 2020, 12(12): 1911 doi: 10.3390/rs12121911
|
[14] |
Sá A C L, Benali A, Fernandes P M, et al. Evaluating Fire Growth Simulations Using Satellite Active Fire Data[J]. Remote Sensing of Environment, 2017, 190: 302-317 doi: 10.1016/j.rse.2016.12.023
|
[15] |
Zhang S, Gao H L. Using the Digital Elevation Model(DEM) to Improve the Spatial Coverage of the MODIS Based Reservoir Monitoring Network in South Asia[J]. Remote Sensing, 2020, 12(5): 745 doi: 10.3390/rs12050745
|
[16] |
骆剑承, 吴田军, 吴志峰. 遥感大数据智能计算[M]. 北京: 科学出版社, 2020
Luo Jiancheng, Wu Tianjun, Wu Zhifeng. Intelligent Computation of Remote Sensing Big Data [M]. Beijing: Science Press, 2020
|
[17] |
梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618-671 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006002.htm
Liang Shunlin, Bai Rui, Chen Xiaona, et al. Review of China's Land Surface Quantitative Remote Sensing Development in 2019[J]. Journal of Remote Sensing, 2020, 24(6): 618-671 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202006002.htm
|
[18] |
Zhang H, Sun Y, Shi W Z, et al. An Object-Based Spatiotemporal Fusion Model for Remote Sensing Images[J]. European Journal of Remote Sensing, 2021, 54(1): 86-101 doi: 10.1080/22797254.2021.1879683
|
[19] |
骆剑承, 吴田军, 吴志峰, 等. 地理图斑智能计算及模式挖掘方法研究[J]. 地球信息科学学报, 2020, 22(1): 57-75 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202001008.htm
Luo Jiancheng, Wu Tianjun, Wu Zhifeng, et al. Methods of Intelligent Computation and Pattern Mining Based on Geo-Parcels[J]. Journal of Geo-Information Science, 2020, 22(1): 57-75 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202001008.htm
|
[20] |
Li J, Li Y F, He L, et al. Spatiotemporal Fusion for Remote Sensing Data: An Overview and New Benchmark[J]. Science China Information Sciences, 2020, 63(4): 1-17
|
[21] |
Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218 doi: 10.1109/TGRS.2006.872081
|
[22] |
Li A H, Bo Y C, Zhu Y X, et al. Blending Multi-Resolution Satellite Sea Surface Temperature (SST)Products Using Bayesian Maximum Entropy Method[J]. Remote Sensing of Environment, 2013, 135: 52-63 doi: 10.1016/j.rse.2013.03.021
|
[23] |
Huang B, Song H H. Spatiotemporal Reflectance Fusion via Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (10): 3707-3716 doi: 10.1109/TGRS.2012.2186638
|
[24] |
Gevaert C M, García-Haro F J. A Comparison of STARFM and an Unmixing-Based Algorithm for Landsat and MODIS Data Fusion[J]. Remote Sensing of Environment, 2015, 156: 34-44 doi: 10.1016/j.rse.2014.09.012
|
[25] |
骆剑承, 吴田军, 李均力, 等, 遥感图谱认知[M]. 北京: 科学出版社, 2017
Luo Jianchen, Wu Tianjun, Li Junli. et al. The Theory of Spatial-Spectral Cognition of Remote Sensing [M]. Beijing: Science Press, 2017
|
[26] |
吴志峰, 骆剑承, 孙营伟, 等. 时空协同的精准农业遥感研究[J]. 地球信息科学学报, 2020, 22(4): 731-742 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004011.htm
Wu Zhifeng, Luo Jiancheng, Sun Yingwei, et al. Research on Precision Agricultural Based on the Spatial-Temporal Remote Sensing Collaboration[J]. Journal of Geo-Information Science, 2020, 22(4): 731-742 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202004011.htm
|
[27] |
杨颖频, 吴志峰, 骆剑承, 等. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报, 2021, 37(7): 166-174 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202107020.htm
Yang Yingpin, Wu Zhifeng, Luo Jiancheng, et al. Parcel-Based Crop Distribution Extraction Using the Spatiotemporal Collaboration of Remote Sensing Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 166-174 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202107020.htm
|
[28] |
Dong W, Wu T J, Luo J C, et al. Land Parcel-Based Digital Soil Mapping of Soil Nutrient Properties in an Alluvial-Diluvia Plain Agricultural Area in China[J]. Geoderma, 2019, 340: 234-248 doi: 10.1016/j.geoderma.2019.01.018
|
[29] |
Sun Y W, Luo J C, Xia L G, et al. Geo-Parcel-Based Crop Classification in Very-High-Resolution Images via Hierarchical Perception[J]. International Journal of Remote Sensing, 2020, 41(4): 1603-1624 doi: 10.1080/01431161.2019.1673916
|
[30] |
梁顺林, 李小文, 王锦地, 定量遥感理论与算法[M]. 北京: 科学出版社, 2013
Liang Shunlin, Li Xiaowen, Wang Jindi. Theory and Algorithm of Quantitative Remote Sensing [M]. Beijing: Science Press, 2013
|
[31] |
Gessner U, Machwitz M, Conrad C, et al. Estimating the Fractional Cover of Growth Forms and Bare Surface in Savannas, a Multi-Resolution Approach Based on Regression Tree Ensembles[J]. Remote Sensing of Environment, 2013, 129: 90-102 doi: 10.1016/j.rse.2012.10.026
|
[32] |
Yao F, Wu J S, Li W F, et al. A Spatially Structured Adaptive Two-Stage Model for Retrieving Ground-Level PM2.5 Concentrations from VIIRS AOD in China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 263-276 doi: 10.1016/j.isprsjprs.2019.03.011
|
[33] |
Wei J, Huang W, Li Z Q, et al. Estimating 1-km-Resolution PM2.5 Concentrations Across China Using the Space-Time Random Forest Approach [J]. Remote Sensing of Environment, 2019, 231: 111221 doi: 10.1016/j.rse.2019.111221
|
[34] |
Hrisko J, Ramamurthy P, Yu Y Y, et al. Urban Air Temperature Model Using GOES-16 LST and a Diurnal Regressive Neural Network Algorithm [J]. Remote Sensing of Environment, 2020, 237: 111495 doi: 10.1016/j.rse.2019.111495
|
[35] |
Servera J V, Alonso L, Martino L, et al. Gradient-Based Automatic Lookup Table Generator for Radiative Transfer Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2) : 1040-1048 doi: 10.1109/TGRS.2018.2864517
|
[36] |
Qiu B, Chen J M, Ju W M, et al. Simulating Emission and Scattering of Solar-Induced Chlorophyll Fluorescence at Far-Red Band in Global Vegetation with Different Canopy Structures[J]. Remote Sensing of Environment, 2019, 233: 111373 doi: 10.1016/j.rse.2019.111373
|
[37] |
Féret J B, Berger K, de Boissieu F, et al. PROSPECT-PRO for Estimating Content of Nitrogen-Containing Leaf Proteins and Other Carbon-Based Constituents[J]. Remote Sensing of Environment, 2021, 252: 112173 doi: 10.1016/j.rse.2020.112173
|
[38] |
Fang H L, Liang S L. A Hybrid Inversion Method for Mapping Leaf Area Index from MODIS Data: Experiments and Application to Broadleaf and Needleleaf Canopies[J]. Remote Sensing of Environment, 2005, 94(3): 405-424 doi: 10.1016/j.rse.2004.11.001
|
[39] |
Malenovský Z, Homolová L, Zurita-Milla R, et al. Retrieval of Spruce Leaf Chlorophyll Content from Airborne Image Data Using Continuum Removal and Radiative Transfer[J]. Remote Sensing of Environment, 2013, 131: 85-102 doi: 10.1016/j.rse.2012.12.015
|
[40] |
Danner M, Berger K, Wocher M, et al. Efficient RTM-Based Training of Machine Learning Regression Algorithms to Quantify Biophysical & Biochemical Traits of Agricultural Crops[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 278-296 doi: 10.1016/j.isprsjprs.2021.01.017
|
[41] |
Fernández-Guisuraga J M, Verrelst J, Calvo L, et al. Hybrid Inversion of Radiative Transfer Models Based on High Spatial Resolution Satellite Reflectance Data Improves Fractional Vegetation Cover Retrieval in Heterogeneous Ecological Systems After Fire[J]. Remote Sensing of Environment, 2021, 255: 112304 doi: 10.1016/j.rse.2021.112304
|
[42] |
Aires F, Pellet V. Estimating Retrieval Errors from Neural Network Inversion Schemes-Application to the Retrieval of Temperature Profiles from IASI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6386-6396 doi: 10.1109/TGRS.2020.3026944
|
[43] |
Li T W, Shen H F, Yuan Q Q, et al. Geographically and Temporally Weighted Neural Networks for Satellite-Based Mapping of Ground-Level PM2.5 [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 178-188 doi: 10.1016/j.isprsjprs.2020.06.019
|
[44] |
Su X, Wang L C, Zhang M, et al. A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari Imager(AHI) Data: Development and Verification[J]. Remote Sensing of Environment, 2021, 253: 112221 doi: 10.1016/j.rse.2020.112221
|
[45] |
Sun J, Gong J H, Zhou J P. Estimating Hourly PM 2.5 Concentrations in Beijing with Satellite Aerosol Optical Depth and a Random Forest Approach[J]. Science of the Total Environment, 2021, 762: 144502 doi: 10.1016/j.scitotenv.2020.144502
|
[46] |
Wong P Y, Lee H Y, Chen Y C, et al. Using a Land Use Regression Model with Machine Learning to Estimate Ground Level PM 2.5[J]. Environmental Pollution (Barking), 2021, 277: 116846 doi: 10.1016/j.envpol.2021.116846
|
[47] |
Xia H P, Chen Y H, Li Y, et al. Combining Kernel-Driven and Fusion-Based Methods to Generate Daily High-Spatial-Resolution Land Surface Tem peratures[J]. Remote Sensing of Environment, 2019, 224: 259-274 doi: 10.1016/j.rse.2019.02.006
|
[48] |
Nguyen H H, Cho S, Jeong J, et al. A D-Vine Copula Quantile Regression Approach for Soil Moisture Retrieval from Dual Polarimetric SAR Sentinel-1 over Vegetated Terrains[J]. Remote Sensing of Environment, 2021, 255: 112283 doi: 10.1016/j.rse.2021.112283
|
[49] |
Zheng X M, Feng Z Z, Li L, et al. Simultaneously Estimating Surface Soil Moisture and Roughness of Bare Soils by Combining Optical and Radar Data [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 100: 102345 doi: 10.1016/j.jag.2021.102345
|
[50] |
Lin J, Lyu H, Miao S, et al. A Two-Step Approach to Mapping Particulate Organic Carbon (POC) in Inland Water Using OLCI Images[J]. Ecological Indicators, 2018, 90: 502-512 doi: 10.1016/j.ecolind.2018.03.044
|
[51] |
Song K S, Liu G, Wang Q, et al. Quantification of Lake Clarity in China Using Landsat OLI Imagery Data[J]. Remote Sensing of Environment, 2020, 243: 111800 doi: 10.1016/j.rse.2020.111800
|
[52] |
Zhang F F, Li J S, Shen Q, et al. A Soft-Classification-Based Chlorophyll-a Estimation Method Using MERIS Data in the Highly Turbid and Eutrophic Taihu Lake[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 138-149 doi: 10.1016/j.jag.2018.07.018
|
[53] |
Yu X L, Lee Z P, Shen F, et al. An Empirical Algorithm to Seamlessly Retrieve the Concentration of Suspended Particulate Matter from Water Color Across Ocean to Turbid River Mouths[J]. Remote Sensing of Environment, 2019, 235: 111491 doi: 10.1016/j.rse.2019.111491
|
[54] |
Liu X Q, Su Y J, Hu T Y, et al. Neural Network Guided Interpolation for Mapping Canopy Height of China's Forests by Integrating GEDI and ICESat-2 Data[J]. Remote Sensing of Environment, 2022, 269: 112844 doi: 10.1016/j.rse.2021.112844
|
[55] |
Sadeh Y, Zhu X, Dunkerley D, et al. Fusion of Sentinel-2 and Planet Scope Time-Series Data into Daily 3 m Surface Reflectance and Wheat LAI Monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96: 102260 doi: 10.1016/j.jag.2020.102260
|
[56] |
Thomas V A, Wynne R H, Kauffman J, et al. Mapping Thins to Identify Active Forest Management in Southern Pine Plantations Using Landsat Time Series Stacks[J]. Remote Sensing of Environment, 2021, 252: 112127 doi: 10.1016/j.rse.2020.112127
|
[57] |
Yang J, Yang R X, Chen M H, et al. Effects of Rural Revitalization on Rural Tourism[J]. Journal of Hospitality and Tourism Management, 2021, 47: 35-45 doi: 10.1016/j.jhtm.2021.02.008
|
[58] |
Ye T T, Zhao N Z, Yang X C, et al. Improved Population Mapping for China Using Remotely Sensed and Points-of-Interest Data Within a Random Forests Model[J]. Science of the Total Environment, 2019, 658: 936-946 doi: 10.1016/j.scitotenv.2018.12.276
|
[59] |
Taubenböck H, Standfuß I, Wurm M, et al. Measuring Morphological Polycentricity-A Comparative Analysis of Urban Mass Concentrations Using Remote Sensing Data[J]. Computers, Environment and Urban Systems, 2017, 64: 42-56 doi: 10.1016/j.compenvurbsys.2017.01.005
|
[60] |
Zhu Z, Zhou Y Y, Seto K C, et al. Understanding an Urbanizing Planet: Strategic Directions for Remote Sensing[J]. Remote Sensing of Environment, 2019, 228: 164-182
|
[61] |
Cai J X, Huang B, Song Y M. Using Multi-source Geospatial Big Data to Identify the Structure of Polycentric Cities[J]. Remote Sensing of Environment, 2017, 202: 210-221 doi: 10.1016/j.rse.2017.06.039
|
[62] |
梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J]. 中国科学: 信息科学, 2015, 45(11): 1355-1369 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201511001.htm
Liang Jiye, Qian Yuhua, Li Deyu, et al. Theory and Method of Granular Computing for Big Data Mining[J]. Scientia Sinica (Informationis), 2015, 45(11): 1355-1369 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201511001.htm
|