Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents

SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
Citation: SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126

Advances in dynamic maintenance technology of mm-level terrestrial reference frame

doi: 10.13203/j.whugis20220126
Funds:

the National Natural Science Foundation of China (42174047).

  • Received Date: 2022-04-23
    Available Online: 2022-06-21
  • The mm-level dynamic maintenance technology is essential to the realization of mmlevel terrestrial reference frames. The current dynamic maintenance technology mainly includes the linear maintenance based on linear velocity, the nonlinear maintenance technology that comprehensively considers the nonlinear motion of the stations and the geocentric motion, and the epoch reference frames technology. Firstly, the development status of linear maintenance technology is summarized. Then, the nonlinear maintenance technology and its research progress is discussed by reviewing the modeling method of coordinate nonlinear variation from the influence mechanism and data. And then introduce the realization process of the epoch reference frame and its application in the maintenance of the reference frames. Finally, based on the analysis of the status quo, several key issues that need to be solved to achieve the dynamic maintenance of the mm-level terrestrial reference frame are proposed.
  • [1] Bloßfeld M, Seitz M, Angermann D. Epoch Reference Frames as Short-Term Realizations of the ITRS[C]//IAG 150 Years. Springer, Cham:Springer International Publishing, 2015, 143:27-32
    [2] Drewes H. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models[M]//Geodesy on the Move. Springer, Berlin, Heidelberg, 1998:377-382
    [3] Drewes H. The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF[M]//Geodetic reference frames. Springer, Berlin, Heidelberg, 2009:95-99
    [4] Sella G F, Dixon T H, Mao A. REVEL:A model for recent plate velocities from space geodesy[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 11-1-ETG 11-30
    [5] Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3)
    [6] Altamimi Z, Métivier L, Rebischung P, et al. ITRF2014 plate motion model[J]. Geophysical Journal International, 2017, 209(3):1906-1912
    [7] Tushingham A M, Peltier W R. Ice-3G:A new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change[J]. Journal of Geophysical Research, 1991, 96(B3):4497-4523
    [8] Peltier W R. Global glacial isostatic adjustment:palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model[J]. Journal of Quaternary Science, 2002, 17(5-6):491-510
    [9] Peltier W R. Global glacial isostasy and the surface of the ice-age Earth:the ICE-5G (VM2) model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:111-149
    [10] Peltier W R, Argus D F, Drummond R. Space geodesy constrains ice age terminal deglaciation:The global ICE-6G_C (VM5a) model[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):450-487
    [11] Paulson A, Zhong S, Wahr J. Inference of mantle viscosity from GRACE and relative sea level data[J]. Geophysical Journal International, 2007, 171(2):497-508
    [12] Geruo A, Wahr S, Zhong S J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading:an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013(2):557-572
    [13] Altamimi Z, Rebischung P, Métivier L, et al. ITRF2014:A new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(8):6109-6131
    [14] (宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5):569-573)

    Ning Jinsheng, Wang Hua, Cheng Pengfei, et al. System Construction and Its Progress of China Geodetic Coordinate System 2000[J]. Geomatics and Information Science of Wuhan University, 2015,40(5):569-573
    [15] Klos A, Dobslaw H, Dill R, et al. Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions:examining vertical displacements from continental Eurasia[J]. GPS Solutions, 2021, 25(3):1-17.
    [16] Li Z, Chen W, van Dam T, et al. Comparative analysis of different atmospheric surface pressure models and their impacts on daily ITRF2014 GNSS residual time series[J]. Journal of Geodesy, 2020, 94(4):1-20
    [17] Vandam T M, Blewitt G, Heflin M B. Atmospheric pressure loading effects on Global Positioning System coordinate determinations[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B12):23939-23950
    [18] Jiang W, Li Z, Dam T V, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7):687-703
    [19] Nicolas J, Verdun J, Boy J P, et al. Improved Hydrological Loading Models in South America:Analysis of GPS Displacements Using M-SSA[J]. Remote Sensing, 2021, 13(9):1605
    [20] van Dam T, Wahr J, Milly P C D, et al. Crustal displacements due to continental water loading[J]. Geophysical Research Letters, 2001, 28(4):651-654
    [21] Tregoning P, Watson C, Ramillien G, et al. Detecting hydrologic deformation using GRACE and GPS[J]. Geophysical Research Letters, 2009, 36(15):401
    [22] van Dam T, Collilieux X, Wuite J, et al. Nontidal ocean loading:amplitudes and potential effects in GPS height time series[J]. Journal of Geodesy, 2012, 86(11):1043-1057
    [23] Wang L, Thaller D, Susnik A, et al. Improving the products of global GNSS data analysis by correcting for loading displacements at the observation level[C]//EGU General Assembly Conference Abstracts. 2021:EGU21-12920.
    [24] Williams S D P, Penna N T. Non-tidal ocean loading effects on geodetic GPS heights[J]. Geophysical Research Letters, 2011, 38(9):314
    [25] Li C, Huang S, Chen Q, et al. Quantitative evaluation of environmental loading induced displacement products for correcting GNSS time series in CMONOC[J]. Remote sensing, 2020, 12(4):594
    [26] Wang K, Chen H, Jiang W, et al. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series[J]. Journal of Geophysics and Engineering, 2018, 15(2):554-567
    [27] Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 9-1-ETG 9-16
    [28] Yan H, Chen W, Zhu Y, et al. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes[J]. Geophysical research letters, 2009, 36(13):L13301
    [29] Fang M, Dong D, Hager B H. Displacements due to surface temperature variation on a uniform elastic sphere with its centre of mass stationary[J]. Geophysical Journal International, 2014, 196(1):194-203
    [30] Xu X, Dong D, Fang M, et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 2017, 21(3):1-10.
    [31] Carrere L, Lyard F, Cancet M, et al. FES2014, a new tidal model-Validation results and perspectives for improvements, presentation to ESA Living Planet Conference[J]. 2016.
    [32] Ray R D. Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research:Oceans, 2013, 118(9):4570-4584
    [33] Greff-Lefftz M, Métivier L, Besse J. Dynamic mantle density heterogeneities and global geodetic observables[J]. Geophysical Journal International, 2010, 180(3):1080-1094
    [34] Altamimi Z, Collilieux X, Legrand J, et al. ITRF2005:A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B9):401
    [35] Altamimi Z, Collilieux X, Métivier L. ITRF2008:an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8):457-473
    [36] Wu X, Ray J, van Dam T. Geocenter motion and its geodetic and geophysical implications[J]. Journal of Geodynamics, 2012, 58:44-61
    [37] (秦显平, 杨元喜. 用SLR数据导出的地心运动结果[J]. 测绘学报, 2003(2):120-124)

    Qin Xianping, Yang Yuanxi. Geocenter Variations Derived from the Data of SLR to Lageos2[J]. Acta Geodaetica Et Cartographic Sinica, 2003(2):120-124
    [38] Kang Z, Tapley B, Chen J, et al. Geocenter motion time series derived from GRACE GPS and LAGEOS observations[J]. Journal of Geodesy, 2019, 93(10):1931-1942
    [39] Métivier L, Greff-Lefftz M, Altamimi Z. On secular geocenter motion:the impact of climate changes[J]. Earth and Planetary Science Letters, 2010, 296(3-4):360-366
    [40] Zhao C, Qiao L, MA T. Estimation and prediction of geocenter motion based on GNSS weekly solutions of IGS[C]//AGU Fall Meeting Abstracts. 2019, 2019:G12A-05
    [41] Chen Q, van Dam T, Sneeuw N, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 2013, 72:25-35
    [42] Wang X, Cheng Y, Wu S, et al. An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(3):2193-2211
    [43] Rangelova E, Sideris M G, Kim J W. On the capabilities of the multi-channel singular spectrum method for extracting the main periodic and non-periodic variability from weekly GRACE data[J]. Journal of geodynamics, 2012, 54:64-78
    [44] Davis J L, Wernicke B P, Tamisiea M E. On seasonal signals in geodetic time series[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B1):403
    [45] Feng T, Shen Y, Wang F. Independent Component Extraction from the Incomplete Coordinate Time Series of Regional GNSS Networks[J]. Sensors, 2021, 21(5):1569
    [46] Liu B, Xing X, Tan J, et al. Modeling Seasonal Variations in Vertical GPS Coordinate Time Series Using Independent Component Analysis and Varying Coefficient Regression[J]. Sensors, 2020, 20(19):5627
    [47] Li Z, Cao L, Jiang S. Comprehensive analysis of Mass Loading Effects on GPS Station Coordinate Time Series Using Different Hydrological Loading Models[J]. IEEE Access, 2021
    [48] Bloßfeld M, Seitz M, Angermann D. Non-linear station motions in epoch and multi-year reference frames[J]. Journal of Geodesy, 2014, 88(1):45-63
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(136) PDF downloads(17) Cited by()

Related
Proportional views

Advances in dynamic maintenance technology of mm-level terrestrial reference frame

doi: 10.13203/j.whugis20220126
Funds:

the National Natural Science Foundation of China (42174047).

Abstract: The mm-level dynamic maintenance technology is essential to the realization of mmlevel terrestrial reference frames. The current dynamic maintenance technology mainly includes the linear maintenance based on linear velocity, the nonlinear maintenance technology that comprehensively considers the nonlinear motion of the stations and the geocentric motion, and the epoch reference frames technology. Firstly, the development status of linear maintenance technology is summarized. Then, the nonlinear maintenance technology and its research progress is discussed by reviewing the modeling method of coordinate nonlinear variation from the influence mechanism and data. And then introduce the realization process of the epoch reference frame and its application in the maintenance of the reference frames. Finally, based on the analysis of the status quo, several key issues that need to be solved to achieve the dynamic maintenance of the mm-level terrestrial reference frame are proposed.

SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
Citation: SUN Fuping, JIA Yanfeng, ZHU Xinhui, XIAO Kai, LIU Jing. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220126
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return