Citation: | LIU Enbo, CHEN Kaiqi, SHI Yan, DENG Min. A Hot Spot Detection Method of Criminal Events Under Data Uncertainty[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2342-2354. DOI: 10.13203/j.whugis20220100 |
Accurate crime hot spot detection technology plays an important role in decision-making support for urban public security management and police force deployment. However, due to the contingency and concealment of urban crime, criminal behavior is usually unable to be observed directly and accurately, resulting in the uncertainty of recorded crime information in time and space. Most of the existing hot spot detection methods are based on the assumption of complete data and they may get unreliable hot spot detection results when applied to practical crime datasets.
Based on this, this paper proposes a crime hot spot detection method under data uncertainty. In terms of time, based on the idea of probability expression and Aoristic analysis, the time sequence law of crime is modeled. In terms of space, based on rational choice theory and daily activity theory, geographic weighted regression is used to correct the incomplete prior probability. Finally, the crime hot spots are extracted by expectation-maximization algorithm to draw a credible hot spot distribution map.
The experimental verification is based on the policing alert data of a prefecture level city in China. The results show that the proposed method can detect stable and reasonable hot spot results in the face of criminal events with different uncertainty strengths.
The hot spots detected by the proposed method sufficiently eliminate the impact of the uncertainty of criminal events, fit with the daily activity theory in criminology, and can provide accurate decision support for police prevention and control deployment.
[1] |
王发曾. 城市犯罪分析与空间防控[M]. 北京: 群众出版社, 2003.
Wang Fazeng. Urban Crime Analysis and Space Prevention and Control[M]. Beijing: Masses Publishing House, 2003.
|
[2] |
李唯秀. 中国改革开放后犯罪趋势及其影响因素研究[J]. 现代商贸工业, 2020, 41(9): 155-156.
Li Weixiu. Research on Crime Trend and Its Influen-cing Factors After China's Reform and Opening up [J]. Modern Business Trade Industry, 2020, 41(9): 155-156.
|
[3] |
Hu Y J, Wang F H, Guin C, et al. A Spatio-Temporal Kernel Density Estimation Framework for Predictive Crime Hotspot Mapping and Evaluation[J]. Applied Geography, 2018, 99: 89-97.
|
[4] |
Zhang L N, Messner S F, Zhang S. Neighborhood Social Control and Perceptions of Crime and Disorder in Contemporary Urban China[J]. Criminology, 2017, 55(3): 631-663.
|
[5] |
Eck J E, Chainey S, Cameron J G, et al. Mapping Crime: Understanding Hot Spots[R]. London: National Institute of Justice, 2005.
|
[6] |
陆娟, 汤国安, 张宏, 等. 犯罪热点时空分布研究方法综述[J]. 地理科学进展, 2012, 31(4): 419-425.
Lu Juan, Tang Guoan, Zhang Hong, et al. A Review of Research Methods for Spatiotemporal Distribution of the Crime Hot Spots[J]. Progress in Geo⁃graphy, 2012, 31(4): 419-425.
|
[7] |
Pezzuchi G. A Brief Commentary on “The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime”[J]. Security Journal, 2008, 21(4): 291-292.
|
[8] |
徐冲, 柳林, 周素红, 等. DP半岛街头抢劫犯罪案件热点时空模式[J]. 地理学报, 2013, 68(12): 1714-1723.
Xu Chong, Liu Lin, Zhou Suhong, et al. The Spatio-Temporal Patterns of Street Robbery in DP Peninsula[J]. Acta Geographica Sinica, 2013, 68(12): 1714-1723.
|
[9] |
朱瑞军. 基于警用大数据的案事件时空聚类方法研究[D]. 南京: 南京师范大学, 2017.
Zhu Ruijun. Research of Spatial-Temporal Clustering for Case Data Based on the Public Security Big-Data [D]. Nanjing: Nanjing Normal University, 2017.
|
[10] |
Catlett C, Cesario E, Talia D, et al. Spatio-Temporal Crime Predictions in Smart Cities: A Data-Driven Approach and Experiments[J]. Pervasive and Mobile Computing, 2019, 53: 62-74.
|
[11] |
吴文浩, 吴升. 多时间尺度密度聚类算法的案事件分析应用[J]. 地球信息科学学报, 2015, 17(7): 837-845.
Wu Wenhao, Wu Sheng. Application of Density-Based Clustering Algorithm in Crime Cases Analysis Considering Multiple Time Scale[J]. Journal of Geo⁃Information Science, 2015, 17(7): 837-845.
|
[12] |
刘永超, 潘顺琪. POI数据下的兰州市城区犯罪分布环境分析[J]. 测绘与空间地理信息, 2019, 42(5): 110-113.
Liu Yongchao, Pan Shunqi. An Analysis of the Distribution of Crimes in Urban Districts of Lanzhou Based on POI Data[J]. Geomatics & Spatial Information Technology, 2019, 42(5): 110-113.
|
[13] |
Khalid S, Shoaib F, Qian T L, et al. Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad[J]. Applied Spatial Analysis and Policy, 2018, 11(3): 599-622.
|
[14] |
柳林, 张春霞, 冯嘉欣, 等. ZG市诈骗犯罪的时空分布与影响因素[J]. 地理学报, 2017, 72(2): 315-328.
Liu Lin, Zhang Chunxia, Feng Jiaxin, et al. The Spatial-Temporal Distribution and Influencing Factors of Fraud Crime in ZG City, China[J]. Acta Geographica Sinica, 2017, 72(2): 315-328.
|
[15] |
任浙豪, 张昊天, 刘苇航, 等. 多尺度探查偷车案件的犯罪时空热点[J]. 华东师范大学学报(自然科学版), 2018(3): 136-145.
Ren Zhehao, Zhang Haotian, Liu Weihang, et al. Detecting Spatiotemporal Hotspots for Vehicle Thefts by Multi-scale Analysis[J]. Journal of East China Normal University (Natural Science), 2018(3): 136-145.
|
[16] |
Buil-Gil D, Medina J, Shlomo N. Measuring the Dark Figure of Crime in Geographic Areas: Small Area Estimation from the Crime Survey for England and Wales[J]. The British Journal of Criminology, 2021, 61(2): 364-388.
|
[17] |
Biderman A D, Reiss A J J R. On Exploring the “Dark Figure” of Crime[J]. The Annals of the American Academy of Political and Social Science, 1967, 374(1): 1-15.
|
[18] |
Ratcliffe J H. Aoristic Analysis: The Spatial Interpretation of Unspecific Temporal Events[J]. International Journal of Geographical Information Science, 2000, 14(7): 669-679.
|
[19] |
Ashby M P, Bowers K J. A Comparison of Methods for Temporal Analysis of Aoristic Crime[J]. Crime Science, 2013, 2(1): 1-16.
|
[20] |
陈谦信. 犯罪的时间特性[J]. 理论与现代化, 2009(4): 113-117.
Chen Qianxin. The Time Characteristics of Crime[J]. Theory and Modernization, 2009(4): 113-117.
|
[21] |
Browning G, Halcli A, Webster F. Understanding Contemporary Society: Theories of the Present[M]. London: United Kingdom SAGE Publications, 2000.
|
[22] |
Cohen L E, Felson M. Social Change and Crime Rate Trends: A Routine Activity Approach[J]. American Sociological Review, 1979, 44(4): 588-608.
|
[23] |
柳林, 纪佳楷, 宋广文, 等. 基于犯罪空间分异和建成环境的公共场所侵财犯罪热点预测[J]. 地球信息科学学报, 2019, 21(11): 1655-1668.
Liu Lin, Ji Jiakai, Song Guangwen, et al. Hotspot Prediction of Public Property Crime Based on Spatial Differentiation of Crime and Built Environment[J]. Journal of Geo⁃Information Science, 2019, 21(11): 1655-1668.
|
[24] |
陈袁芳, 蔡建南, 刘启亮, 等. 城市犯罪时空同现模式的非参数检验方法[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1883-1892.
Chen Yuanfang, Cai Jiannan, Liu Qiliang, et al. A Nonparametric Test-based Approach for Mining Spatio-Temporal Co-occurrence Patterns of Urban Crimes[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1883-1892.
|
[25] |
李小昱, 刘郑倩, 吴康敏, 等. 利用POI建模分析城市国土开发密度[J]. 测绘地理信息, 2022, 47(5): 98-101.
Li Xiaoyu, Liu Zhengqian, Wu Kangmin, et al. Analysis of Urban Land Development Density with POI Modeling[J]. Journal of Geomatics, 2022, 47(5): 98-101.
|
[26] |
Cichosz P. Urban Crime Risk Prediction Using Point of Interest Data[J]. ISPRS International Journal of Geo⁃Information, 2020, 9(7): 459.
|
[27] |
Zhou B B, Chen L B, Zhao S, et al. Spatio-Temporal Analysis of Urban Crime Leveraging Multisource Crowdsensed Data[J]. Personal and Ubiquitous Computing, 2023, 27(3): 599-612.
|
[28] |
Brunsdon C, Fotheringham S, Charlton M. Geographically Weighted Regression[J]. Journal of the Royal Statistical Society: Series D (the Statistician), 1998, 47(3): 431-443.
|
[29] |
邓敏, 谌恺祺, 石岩, 等. 多尺度空间同位模式挖掘的点过程分解方法[J]. 测绘学报, 2022, 51(2): 258-268.
Deng Min, Chen Kaiqi, Shi Yan, et al. Point Process Decomposition Method for Multi-scale Spatial Co-location Pattern Mining[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 258-268.
|
[30] |
王海林, 陈鹏, 井晓龙. 基于Aoristic方法的多发性案件发案时间特征分析[J]. 中国人民公安大学学报(自然科学版), 2021, 27(3): 93-101.
Wang Hailin, Chen Peng, Jing Xiaolong. Analysis of the Time Characteristic of Multiple Cases Based on the Aoristic Method[J]. Journal of People’s Public Security University of China (Science and Technology), 2021, 27(3): 93-101.
|
[31] |
蔡未, 王耕宇. 浅谈地理环境与犯罪[J]. 法制博览, 2014(24): 244.
Cai Wei, Wang Gengyu. A Brief Discussion on Geographical Environment and Crime [J]. Legality Vision, 2014(24): 244.
|
[32] |
陈晓娟. 我国电信网络诈骗犯罪的犯罪学分析[J]. 山东警察学院学报, 2017, 29(5): 119-125.
Chen Xiaojuan. Criminological Analysis of Telecom Network Fraud in China [J]. Journal of Shandong Police College, 2017, 29(5): 119-125.
|
[33] |
McLachlan G J, Rathnayake S. On the Number of Components in a Gaussian Mixture Model[J]. WIREs Data Mining and Knowledge Discovery, 2014, 4(5): 341-355.
|
[34] |
Chainey S, Ratcliffe J. GIS and Crime Mapping[M]. New York: Wiley, 2005.
|
[35] |
Chau M, Cheng R, Kao B, et al. Uncertain Data Mining: An Example in Clustering Location Data[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006: 199-204.
|
[36] |
奚居仁. 犯罪黑数的形成原因[J]. 合肥工业大学学报(社会科学版), 2005, 19(3): 124-127.
Xi Juren. The Reasons for Inducing the Dark Figure of Crime[J]. Journal of Hefei University of Techno⁃logy (Social Sciences), 2005, 19(3): 124-127.
|