ZHANG Yongjun, HONG Weichen, WAN Yi. Registration of HRSI and LiDAR Point Clouds Based on Distance Transformation Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 339-348. DOI: 10.13203/j.whugis20220028
Citation: ZHANG Yongjun, HONG Weichen, WAN Yi. Registration of HRSI and LiDAR Point Clouds Based on Distance Transformation Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 339-348. DOI: 10.13203/j.whugis20220028

Registration of HRSI and LiDAR Point Clouds Based on Distance Transformation Model

More Information
  • Received Date: December 19, 2021
  • Available Online: April 06, 2022
  • Published Date: March 04, 2023
  •   Objectives  High resolution satellite images (HRSI) can provide spectral characteristics observation information of ground objects at low cost and high frequency, while light detection and ranging(LiDAR) point clouds can provide fine geometric structure. The fusion of two kinds of data can realize complementary advantages, and further improve the accuracy and automation of ground object classification and information extraction. The realization of geometric registration with sub-pixel accuracy is the premise of two kinds of data fusion.
      Methods  A fast registration method based on line element distance transformation model is proposed. The point clouds are used as the control source, and the typical line elements such as building edges in the point clouds are projected into the image space through the initial rational polynomial coefficient(RPC) parameters of the satellite image, and the iterative closest point registration is carried out with the line elements in the satellite image, so as to achieve geometric registration by means of refining RPC parameters. In this method, the distance transformation model is used as the search table of the iterative closest point, which greatly improves the operation efficiency. Furthermore, the latest progressive robust solution strategy is adopted at the same time of the closest point iteration, so as to ensure the robustness of registration in the case of too much noise.Registration experiments are carried out on GeoEye-2 data, Gaofen-7 data, WorldView-3 data with LiDAR point clouds data.
      Results  The results prove that the proposed method can achieve a registration accuracy of 0.4—0.7 m on three kinds of images by using the ground control points which are accurately measured and the operator's internal control points as checkpoints.
      Conclusions  It is significantly better than the strategy of mapping point clouds to 2D image and registering through multi-mode matching.
  • [1]
    Wong A, Orchard J. Efficient FFT-Accelerated Approach to Invariant Optical–LiDAR Registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3917-3925. doi: 10.1109/TGRS.2008.2001685
    [2]
    Kim C, Habib A. Object-Based Integration of Photogrammetric and LiDAR Data for Automated Generation of Complex Polyhedral Building Models[J]. Sensors, 2009, 9(7): 5679-5701. doi: 10.3390/s90705679
    [3]
    Mastin A, Kepner J, Fisher J. Automatic Registration of LiDAR and Optical Images of Urban Scenes[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009.
    [4]
    姚春静. 机载LiDAR点云数据与遥感影像配准的方法研究[D]. 武汉: 武汉大学, 2010.

    Yao Chunjing. Research on Registration of LiDAR Point Data and Remote Sensing Imaged[D]. Wuhan: Wuhan University, 2010.
    [5]
    Barsai G, Yilmaz A, Nagarajan S, et al. Registration of Images to LiDAR and GIS Data Without Establishing Explicit Correspondences[J]. Photogrammetric Engineering and Remote Sensing, 2017, 83(10): 705-716. doi: 10.14358/PERS.83.10.705
    [6]
    Lahat D, Adali T, Jutten C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects[J]. Proceedings of the IEEE, 2015, 103(9): 1449-1477. doi: 10.1109/JPROC.2015.2460697
    [7]
    Liang S, Li X, Wang J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications[M]. London: Academic Press, 2019.
    [8]
    Gruen A, Akca D. Least Squares 3D Surface and Curve Matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 151-174. doi: 10.1016/j.isprsjprs.2005.02.006
    [9]
    Akca D. Matching of 3D Surfaces and Their Intensities[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2): 112-121. doi: 10.1016/j.isprsjprs.2006.06.001
    [10]
    Habib A F, Shin S, Kim C, et al. Integration of Photogrammetric and LiDAR Data in a Multi-primitive Triangulation Environment[J]. Lecture Notes in Geoinformation and Cartography, 2006(1): 29-45.
    [11]
    Shorter N, Kasparis T. Autonomous Registration of LiDAR Data to Single Aerial Image[C]//IEEE International Geoscience and Remote Sensing Symposium, Portland, OR, USA, 2008.
    [12]
    Zheng S, Huang R, Zhou Y. Registration of Optical Images with LiDAR Data and Its Accuracy Assessment[J]. Photogrammetric Engineering and Remote Sensing, 2013, 79(8): 731-741. doi: 10.14358/PERS.79.8.731
    [13]
    Huang R, Zheng S, Hu K. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations[J]. Sensors, 2018, 18(6): 1770. doi: 10.3390/s18061770
    [14]
    Li J, Hu Q, Ai M. RIFT: Multi-modal Image Matching Based on Radiation-Variation Insensitive Feature Transform[J]. IEEE Transactions on Image Processing, 2019, 29: 3296-3310.
    [15]
    张祖勋, 张剑清. 广义点摄影测量及其应用[J]. 武汉大学学报(信息科学版), 2005, 30(1): 1-5. http://ch.whu.edu.cn/article/id/2064

    Zhang Zuxun, Zhang Jianqing. Generalized Point Photogrammetry and Its Application[J]. Geomatics and Information Science of Wuhan University, 2005, 30(1): 1-5 http://ch.whu.edu.cn/article/id/2064
    [16]
    张永军, 胡丙华, 张剑清. 基于多种同名特征的相对定向方法研究[J]. 测绘学报, 2011, 40(2): 194-199.

    Zhang Yongjun, Hu Binghua, Zhang Jianqing. Relative Orientation Based on Multiple Conjugate Features[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 194-199.
    [17]
    Chetverikov D, Svirko D, Stepanov D, et al. The Trimmed Iterative Closest Point Algorithm[C]//Object Recognition Supported by User Interaction for Service Robots, Quebec City, Canada, 2002.
    [18]
    Zhu X, Liu X, Zhang Y, et al. Robust 3-D Plane Segmentation from Airborne Point Clouds Based on Quasi-a-Contrario Theory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7133-7147. doi: 10.1109/JSTARS.2021.3093576
    [19]
    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [20]
    Qi C R, Yi L, Su H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]//The 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017.
    [21]
    Hu Q, Yang B, Xie L, et al. RandLA‑Net: Efficient Semantic Segmentation of Large-Scale Point Clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020.
    [22]
    Canny J. A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8 (6): 679-698.
    [23]
    Von Gioi R G, Jakubowicz J, Morel J M, et al. LSD: A Line Segment Detector[J]. Image Processing on Line, 2012, 2: 35-55. doi: 10.5201/ipol.2012.gjmr-lsd
    [24]
    Bentley J L. Multidimensional Binary Search Trees Used for Associative Searching[J]. Communications of the ACM, 1975, 18(9): 509-517. doi: 10.1145/361002.361007
    [25]
    Fabbri R, Costa L D F, Torelli J C, et al. 2D Euclidean Distance Transform Algorithms: A Comparative Survey[J]. ACM Computing Surveys, 2008, 40(1): 1-44.
    [26]
    Li J, Zhang Y, Hu Q. Robust Estimation in Robot Vision and Photogrammetry: A New Model and Its Applications[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, 1: 137-144.
    [27]
    张祖勋, 陶鹏杰. 谈大数据时代的"云控制"摄影测量[J]. 测绘学报, 2017, 46(10): 1238-1248.

    Zhang Zuxun, Tao Pengjie. An Overview on "Cloud Control" Photogrammetry in Big Data Era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1238-1248.
  • Cited by

    Periodical cited type(5)

    1. 李丰,李燕,石彬彬. 加权高斯匹配滤波下激光复合成像三维重构. 激光杂志. 2025(01): 251-256 .
    2. 王密,樊仲藜,皮英冬,刘玉轩. 一阶高斯方向可调滤波器引导的多源卫星遥感影像配准方法. 武汉大学学报(信息科学版). 2024(05): 681-690 .
    3. 潘文亮,吴兵. 基于三维激光点云的建筑物立面图绘制. 北京测绘. 2024(08): 1128-1133 .
    4. 李玮琳,曾琪峰,李颖. 脉冲耦合神经网络下多视角激光图像点云配准. 激光杂志. 2024(12): 125-130 .
    5. 杨恒,张文清. 多源数据融合实景三维重建研究进展. 智能建筑与智慧城市. 2023(09): 70-73 .

    Other cited types(2)

Catalog

    Article views (1339) PDF downloads (214) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return