Citation: | LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652 |
[1] |
李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211-1216 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412002.htm
Li Deren, Zhang Liangpei, Xia Guisong. Automatic Analysis and Mining of Remote Sensing Big Data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211-1216 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201412002.htm
|
[2] |
付琨, 孙显, 仇晓兰, 等. 遥感大数据条件下多星一体化处理与分析[J]. 遥感学报, 2021, 25(3): 691-707 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202103001.htm
Fu Kun, Sun Xian, Qiu Xiaolan, et al. Multi-Satellite Integrated Processing and Analysis Method Under Remote Sensing Big Data[J]. National Remote Sensing Bulletin, 2021, 25(3): 691-707 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202103001.htm
|
[3] |
潘灼坤, 胡月明, 王广兴, 等. 对遥感在城市更新监测应用中的认知和思考[J]. 遥感技术与应用, 2020, 35(4): 911-923 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202004019.htm
Pan Zhuokun, Hu Yueming, Wang Guangxing, et al. Cognitions and Perspectives in Remote Sensing of Urban Renewal Monitoring[J]. Remote Sensing Technology and Application, 2020, 35(4): 911-923 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202004019.htm
|
[4] |
McCarthy J, Minsky M, Rochester N, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955[J]. AI Mag, 2006, 27: 12-14
|
[5] |
Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain[J]. Psychological Review, 1958, 65(6): 386-408 doi: 10.1037/h0042519
|
[6] |
张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50(9): 1281-1302 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202009002.htm
Zhang Bo, Zhu Jun, Su Hang. Toward the Third Generation of Artificial Intelligence[J]. Scientia Sinica(Informationis), 2020, 50(9): 1281-1302 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202009002.htm
|
[7] |
Goodenough D G, Goldberg M, Plunkett G, et al. An Expert System for Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25(3): 349-359 doi: 10.1109/TGRS.1987.289805
|
[8] |
Matsuyama T. Knowledge-Based Aerial Image Understanding Systems and Expert Systems for Image Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25(3): 305-316 doi: 10.1109/TGRS.1987.289802
|
[9] |
许珺, 裴韬, 姚永慧. 地学知识图谱的定义、内涵和表达方式的探讨[J]. 地球信息科学学报, 2010, 12(4): 496-502 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201004009.htm
Xu Jun, Pei Tao, Yao Yonghui. Conceptual Framework and Representation of Geographic Knowledge Map[J]. Journal of Geo-Information Science, 2010, 12(4): 496-502 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201004009.htm
|
[10] |
王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101004.htm
Wang Zhihua, Yang Xiaomei, Zhou Chenghu. Geographic Knowledge Graph for Remote Sensing Big Data[J]. Journal of Geo-Information Science, 2021, 23(1): 16-28 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202101004.htm
|
[11] |
张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学: 信息科学, 2020, 50(7): 1019-1032 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202007005.htm
Zhang Xueying, Zhang Chunju, Wu Mingguang, et al. Spatiotemporal Features Based Geographical Knowledge Graph Construction[J]. Scientia Sinica (Informationis), 2020, 50(7): 1019-1032 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202007005.htm
|
[12] |
Alirezaie M, Längkvist M, Sioutis M, et al. Semantic Referee: A Neural-Symbolic Framework for Enhancing Geospatial Semantic Segmentation[J]. Semantic Web, 2019, 10(5): 863-880 doi: 10.3233/SW-190362
|
[13] |
Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and Their Compositionality[J]. CoRR, 2013, DOI: 1310.4546
|
[14] |
Bordes A, Usunier N, Garcia-Duran A, et al. Translating Embeddings for Modeling Multi-relational Data[C]//Neural Information Processing Systems(NIPS), Carson City, USA, 2013
|
[15] |
Chen Y W, Zhang S L, Peng X, et al. A Collaborative Ontology Construction Tool with Conflicts Detection[C]//The 4th International Conference on Semantics, Knowledge and Grid, Beijing, China, 2008
|
[16] |
杜清运, 任福. 空间信息的自然语言表达模型[J]. 武汉大学学报·信息科学版, 2014, 39(6): 682-688 doi: 10.13203/j.whugis20140118
Du Qingyun, Ren Fu. Representation Model of Spatial Information in Natural Language[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 682-688 doi: 10.13203/j.whugis20140118
|
[17] |
Chen J Y, Jimenez-Ruiz E, Horrocks I, et al. Learning Semantic Annotations for Tabular Data[C]/The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019
|
[18] |
Chen T, Xu R F, He Y L, et al. Improving Sentiment Analysis via Sentence Type Classification Using BiLSTM-CRF and CNN[J]. Expert Systems with Applications, 2017, 72: 221-230 doi: 10.1016/j.eswa.2016.10.065
|
[19] |
Haklay M, Weber P. OpenStreetMap: User-Generated Street Maps[J]. IEEE Pervasive Computing, 2008, 7(4): 12-18 doi: 10.1109/MPRV.2008.80
|
[20] |
Tempelmeier N, Demidova E. Linking OpenStreetMap with Knowledge Graphs—Link Discovery for Schema-Agnostic Volunteered Geographic Information[J]. Future Generation Computer Systems, 2021, 116: 349-364 doi: 10.1016/j.future.2020.11.003
|
[21] |
Yang X, Liu Q Q, Yan J C, et al. R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object[J]. arXiv, 2019, DOI: 1908.05612
|
[22] |
Sun Z Q, Hu W, Zhang Q H, et al. Bootstrapping Entity Alignment with Knowledge Graph Embedding[C]//The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018
|
[23] |
Zhang Z Q, Cai J Y, Zhang Y D, et al. Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction[C]//The AAAI Conference on Artificial Intelligence, New York, USA, 2020
|
[24] |
李彦胜, 孔德宇, 张永军, 等. 联合稳健跨域映射和渐进语义基准修正的零样本遥感影像场景分类[J]. 测绘学报, 2020, 49(12): 1564-1574 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202012007.htm
Li Yansheng, Kong Deyu, Zhang Yongjun, et al. Zero-Shot Remote Sensing Image Scene Classification Based on Robust Cross-Domain Mapping and Gradual Refinement of Semantic Space[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1564-1574 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202012007.htm
|
[25] |
Li Y S, Kong D Y, Zhang Y J, et al. Robust Deep Alignment Network with Remote Sensing Knowledge Graph for Zero-Shot and Generalized Zero-Shot Remote Sensing Image Scene Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179: 145-158 doi: 10.1016/j.isprsjprs.2021.08.001
|
[26] |
Wang Z, Zhang J, Feng J, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]//AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014
|
[27] |
Kodirov E, Xiang T, Gong S G. Semantic Autoencoder for Zero-Shot Learning[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[28] |
Li Y N, Wang D H, Hu H H, et al. Zero-Shot Recognition Using Dual Visual-Semantic Mapping Paths[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[29] |
Elhoseiny M, Elfeki M. Creativity Inspired Zero-Shot Learning[C]//IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea(South), 2019
|
[30] |
Schönfeld E, Ebrahimi S, Sinha S, et al. Generalized Zero and Few-Shot Learning via Aligned Variational Autoencoders[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, CA, USA, 2019
|
[31] |
Tong X Y, Xia G S, Lu Q K, et al. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models[J]. Remote Sensing of Environment, 2020, 237: 111322 doi: 10.1016/j.rse.2019.111322
|
[32] |
Li Y S, Ouyang S, Zhang Y J. Collaboratively Boosting Data-Driven Deep Learning and Knowledge-Guided Ontological Reasoning for Semantic Segmentation of Remote Sensing Imagery[J]. arXiv, 2020, DOI: 2010.02451
|
[33] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]//Cham: Springer International Publishing, 2015
|
[34] |
Ma L, Liu Y, Zhang X L, et al. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177 doi: 10.1016/j.isprsjprs.2019.04.015
|
[35] |
李德仁. 脑认知与空间认知: 论空间大数据与人工智能的集成[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1761-1767 doi: 10.13203/j.whugis20180411
Li Deren. Brain Cognition and Spatial Cognition: On Integration of Geo-spatial Big Data and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1761-1767 doi: 10.13203/j.whugis20180411
|
[36] |
Zellers R, Yatskar M, Thomson S, et al. Neural Motifs: Scene Graph Parsing with Global Context[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[37] |
Zhu Y H, Jiang S Q, Li X Y. Visual Relationship Detection with Object Spatial Distribution[C]//IEEE International Conference on Multimedia and Expo, Hong Kong, China, 2017
|
[1] | HU Xiangyun, ZHANG Mi, ZHANG Zuxun, LI Xiaokai, DENG Kai, JIANG Huiwei, PANG Shiyan, RAO Youzhuo, GONG Jinqi, FENG Cunjun, ZHAN Yuanzeng, WANG Xingkun. Key Technologies and Applications of EasyFeature—An Intelligent Interpretation System for Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 554-561. DOI: 10.13203/j.whugis20240159 |
[2] | LI Jiayi, HUANG Xin, HU Yuping, ZHANG Zhen, ZHANG Xueting, ZHANG Shulei, FANG Xing. Fusion of Optical Daily and Night-time Light Remote Sensing Images for Collapsed Building Detection: A Case in Turkey Mw 7.8 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1706-1714. DOI: 10.13203/j.whugis20230275 |
[3] | LÜ Yafei, XIONG Wei, ZHANG Xiaohan. A General Cross-Modal Correlation Learning Method for Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1887-1895. DOI: 10.13203/j.whugis20200213 |
[4] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[5] | ZHANG Haiming, WANG Mingchang, CHEN Xueye, WANG Fengyan, YANG Guodong, GAO Su. Remote Sensing Change Detection Based on Deep Belief Networks Optimized by Domain Knowledge[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 762-768. DOI: 10.13203/j.whugis20190471 |
[6] | SHAO Zhenfeng, SUN Yueming, XI Jiangbo, LI Yan. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 234-241. DOI: 10.13203/j.whugis20200640 |
[7] | CHEN Hang, LUO Bin. Multi-angle Remote Sensing Images Super-Resolution Reconstruction Using Dynamic Upsampling Filter Deep Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1716-1726. DOI: 10.13203/j.whugis20200651 |
[8] | JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620 |
[9] | ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650 |
[10] | ZHANG Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1861-1871. DOI: 10.13203/j.whugis20180172 |