LIU Jingbin, WANG Zemin, LÜ Xuanfan, LI Wei, YIN Fei, QIU Hongyu. Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593
Citation: LIU Jingbin, WANG Zemin, LÜ Xuanfan, LI Wei, YIN Fei, QIU Hongyu. Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593

Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar

More Information
  • Received Date: October 11, 2022
  • Available Online: July 21, 2022
  • Objectives 

    Millimeter wave radar has been widely used in automotive industry and other fields, but its application is mainly limited to the environmental perception of obstacles or specific tasks. At pres‍ent, there is little research on the application of millimeter wave radar in the field of navigation and positioning.

    Methods 

    This paper first studies the raw data processing principle of millimeter wave radar, and then designs an indoor ego‐localization method which only depends on a low‐cost millimeter wave radar. The process mainly includes extracting centroid feature points using density based spatial clustering of applications with noise(DBSCAN) algorithm, matching centroid feature point pairs through nearest neighbor criterion, constructing nonlinear optimization function and solving positioning results using levenberg marquardt method.

    Results and Conclusions 

    Experiments show that indoor navigation and positioning can be solved in real time by using a low‐cost millimeter wave radar. Under static conditions, the average horizontal positioning accuracy can reach sub centimeter level (mean value is 0.82 cm and standard deviation is 0.47 cm). Under dynamic conditions, the absolute trajectory error can reach 0.66 m and the average head‍ing angle error can reach 4.58°, which shows the feasibility of ego‐localization of low‐cost millimeter wave radar. Finally, this paper discusses the problems and feasible research ideas of low‐cost millimeter wave radar in navigation and positioning.

  • [1]
    陈锐志, 叶锋. 基于Wi‐Fi信道状态信息的室内定位技术现状综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2064-2070. doi: 10.13203/j.whugis20180176

    Chen Ruizhi, Ye Feng. An Overview of Indoor Positioning Technology Based on Wi‐Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070 doi: 10.13203/j.whugis20180176
    [2]
    柳景斌, 黄百川, 张斌, 等. 利用双天线商用Wi‐Fi信道状态信息估计到达角[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2167-2172. doi: 10.13203/j.whugis20180178

    Liu Jingbin, Huang Baichuan, Zhang Bin, et al. AOA Estimation Based on Channel State Information Extracted from Wi‐Fi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172 doi: 10.13203/j.whugis20180178
    [3]
    陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202102002.htm

    Chen Ruizhi, Guo Guangyi, Ye Feng, et al. Tightly‐Coupled Integration of Acoustic Signal and MEMS Sensors on Smartphones for Indoor Position‍ing[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202102002.htm
    [4]
    王锐. 基于行人航位推算(PDR)技术的室内导航系统[D]. 南京: 南京邮电大学, 2019.

    Wang Rui. A Pedestrian Dead Reckoning (PDR) Based Indoor Navigation System[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019
    [5]
    Campos C, Elvira R, Rodríguez J J G, et al. ORB‐SLAM3: An Accurate Open‐Source Library for Visual, Visual‐Inertial, and Multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644
    [6]
    Mur‐Artal R, Montiel J M M, Tardós J D. ORB‐SLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    [7]
    Qin T, Li P L, Shen S J. VINS‐Mono: A Robust and Versatile Monocular Visual‐Inertial State Estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729
    [8]
    Ji Z, Singh S. Visual‐LiDAR Odometry and Mapping: Low‐Drift, Robust, and Fast[C]// IEEE International Conference on Robotics & Automation, Seattle, WA, USA, 2015.
    [9]
    Wang Z, Zhang Q, Li J, et al. A Computationally Efficient Semantic SLAM Solution for Dynamic Scenes[J]. Remote Sensing, 2019, 11(11): 1363. doi: 10.3390/rs11111363
    [10]
    Barnes D, Gadd M, Murcutt P, et al. The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset[C]// IEEE International Conference on Robotics and Automation, Paris, France, 2020.
    [11]
    Cen S H, Newman P. Precise Ego‐Motion Estimation with Millimeter‐Wave Radar Under Diverse and Challenging Conditions[C]// IEEE International Conference on Robotics and Automation, Brisbane, Australia, 2018.
    [12]
    Cen S H, Newman P. Radar‐Only Ego‐Motion Estimation in Difficult Settings via Graph Matching[C]// International Conference on Robotics and Automation, Montreal, Canada, 2019.
    [13]
    Hong Z, Petillot Y, Wang S. Radar SLAM: Radar Based Large‐Scale SLAM in All Weathers[C]//IEEE International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020.
    [14]
    Kung P C, Wang C C, Lin W C. A Normal Distribution Transform‐Based Radar Odometry Designed for Scanning and Automotive Radars[C]// IEEE International Conference on Robotics and Automation, Xi􀆳an, China, 2021.
    [15]
    Burnett K, Schoellig A P, Barfoot T D. Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation?[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 771-778. doi: 10.1109/LRA.2021.3052439
    [16]
    郑睿, 李方东. 基于调频毫米波的安防移动机器人导航系统[J]. 仪器仪表学报, 2021, 42(3): 105-113. doi: 10.19650/j.cnki.cjsi.J2007261

    Zheng Rui, Li Fangdong. Navigation System of Security Mobile Robot Based on FM Millimeter Wave[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 105-113 doi: 10.19650/j.cnki.cjsi.J2007261
    [17]
    王彦平, 刘宇通, 李洋, 等. 基于CSM的毫米波雷达点云匹配定位方法[C]//第十四届全国信号和智能信息处理与应用学术会议, 中国, 北京, 2021.

    Wang Yanping, Liu Yutong, Li Yang, et al. PointCloud Matching Localization Method for Millimeter Wave Radar Based on CSM[C]// National Confer‍ence on Signal and Intelligent Information Process‍ing and Application, China, Beijing, 2021
    [18]
    Ester M, Kriegel H, Sander J, et al. A Density‐Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//SIGKDD, Portland, Oregon, USA, 1996.
    [19]
    Moré J J. The Levenberg‐Marquardt Algorithm: Implementation and Theory[M]//Lecture Notes in Mathematics. Berlin, Germany: Springer, 1978.
    [20]
    Hess W, Kohler D, Rapp H, et al. Real‐Time Loop Closure in 2D LiDAR SLAM[C]//IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 2016.
    [21]
    Sturm J, Engelhard N, Endres F, et al. A Benchmark for the Evaluation of RGB‐D SLAM Systems[C]// IEEE International Conference on Intelligent Robots and Systems, Vilamoura‐Algarve, Portugal, 2012.
  • Related Articles

    [1]LI Dehai, WU Wentan, MA Huilin, BEI Jinzhong, ZHAO Yiyuan. Positioning Performance Analysis of Indoor Networks of Range-Based Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 1-10. DOI: 10.13203/j.whugis20220513
    [2]CHEN Ruizhi, GUO Guangyi, CHEN Liang, NIU Xiaoguang. Application Status, Development and Future Trend of High-Precision Indoor Navigation and Tracking[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1591-1600. DOI: 10.13203/j.whugis20230212
    [3]WU Hui, LIU Zhe, HU Jin. Multi-objective Optimization of RSSI Sensor Deployment Considering Obstacles for Indoor Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 471-479. DOI: 10.13203/j.whugis20200421
    [4]YANG Fan, LIU Jing-bin, GONG Xiao-dong, HUANG Ge-ge, LIU De-long, MAO Jing-feng. Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230241
    [5]LIU Jingbin, ZHAO Zhibo, HU Ningsong, HUANG Gege, GONG Xiaodong, YANG Sheng. Summary and Prospect of Indoor High-Precision Positioning Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 997-1008. DOI: 10.13203/j.whugis20220029
    [6]ZHEN Jie, WU Jianxin, LIU Jiping, XU Shenghua, ZHOU Zhenfa, XIN Haiqiang. A High Accuracy Positioning Method for Single Base Station in Indoor Emergency Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1146-1154. DOI: 10.13203/j.whugis20200128
    [7]ZHAO Wangyu, LI Bijun, SHAN Yunxiao, XU Haoda. Vehicle Detection and Tracking Based on Fusion of Millimeter Wave Radar and Monocular Vision[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1832-1840. DOI: 10.13203/j.whugis20180146
    [8]CHEN Ruizhi, YE Feng. An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176
    [9]Liu Chunyan, Wang Jian. A Constrained KNN Indoor Positioning Model Based on a Geometric Clustering Fingerprinting Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1287-1292.
    [10]FAN Lingang, CHEN Xi, CHEN Zezong, JIN Yan. Ocean Breaking Wave Detection with Microwave Doppler Radar[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 998-1002.
  • Cited by

    Periodical cited type(5)

    1. 吕轩凡,柳景斌,毛井锋. 一种毫米波雷达里程计自主定位技术. 测绘通报. 2024(07): 1-5 .
    2. 王余珊,郑建立. 融合毫米波雷达和惯性传感器的行人定位系统研究. 智能计算机与应用. 2024(08): 191-196 .
    3. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 .
    4. 龚树凤,邓晓强,方一鸣,贾立新,吴哲夫. 基于毫米波雷达的室内人员定位与跟踪实验设计. 实验室研究与探索. 2024(11): 52-56 .
    5. 黄育夫,熊军,习涛. 基于毫米波雷达的空调节能技术研究. 家电科技. 2022(S1): 176-180 .

    Other cited types(4)

Catalog

    Article views (1948) PDF downloads (306) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return