LU Xiaoping, CAI Guosheng, ZHANG Xiangjun, YU Haikun, LI Guoqing, ZHAO Zifeng. A National OCO-2 SIF Downscaling Method Integrating Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1556-1565. DOI: 10.13203/j.whugis20210491
Citation: LU Xiaoping, CAI Guosheng, ZHANG Xiangjun, YU Haikun, LI Guoqing, ZHAO Zifeng. A National OCO-2 SIF Downscaling Method Integrating Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1556-1565. DOI: 10.13203/j.whugis20210491

A National OCO-2 SIF Downscaling Method Integrating Multi-source Data

More Information
  • Received Date: September 05, 2022
  • Objective 

    The value of solar-induced chlorophyll fluorescence (SIF) is of great significance for characterizing the growth status of crops and early diagnosis of vegetation stress. At present, a large range of SIF values are retrieved by remote sensing technology. However, due to the limitations of low spatial resolution and sparse sampling, it is difficult to meet the application of spatial scales below the provincial level. To solve the above problems, this paper proposes a SIF downscaling model construction method based on random forest (RF) algorithm.

    Methods 

    First, multi-source remote sensing data are fused with orbiting carbon observation-2 (OCO-2) SIF, and the nonlinear relationship with characteristic variables is established under the same scale of SIF. Based on the assumption that the spatial scale relationship is constant, 500 m×500 m spatial resolution SIF data are inversely performed by RF algorithm.

    Results 

    The coefficients of determination, mean absolute error and root mean squared error of the prediction model reached 0.72, 0.24 mW·m-2·nm-1·sr-1 and 0.33 mW·m-2·nm-1·sr-1, respectively, indicating the effectiveness of this method. Then, based on the SIF data after the model downscaling, the spatial correlation analysis is carried out with the enhanced vegetation index, normalized difference vegetation index, and the new OCO-2 SIF data, and verified with the SIF of the Chinese carbon dioxide observation satellite mission and the ground SIF station data. The results show good correlation. In addition, the time series analysis of the downscaled SIF in Henan Province, shows that the downscaled products can better capture vegetation change information.

    Conclusions 

    The RF algorithm can perform SIF products with 500 m×500 m spatial resolution well by integrating multi-source data.

  • [1]
    章钊颖, 王松寒, 邱博, 等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报, 2019, 23(1): 37-52.

    Zhang Zhaoying, Wang Songhan, Qiu Bo, et al. Retrieval of Sun-induced Chlorophyll Fluorescence and Advancements in Carbon Cycle Application[J]. Journal of Remote Sensing, 2019, 23(1): 37-52.
    [2]
    Wood J D, Griffis T J, Baker J M, et al. Multiscale Analyses of Solar-Induced Florescence and Gross Primary Production[J]. Geophysical Research Letters, 2017, 44(1): 533-541.
    [3]
    陈思媛, 竞霞, 董莹莹, 等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3): 511-520.

    Chen Siyuan, Jing Xia, Dong Yingying, et al. Detection of Wheat Stripe Rust Using Solar-Induced Chlorophyll Fluorescence and Reflectance Spectral Indices[J]. Remote Sensing Technology and Application, 2019, 34(3): 511-520.
    [4]
    孙刚, 刘良云, 郑文刚, 等. 基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪[J]. 农业机械学报, 2009, 40(S1): 248-251.

    Sun Gang, Liu Liangyun, Zheng Wengang, et al. Development of a Solar-induced Chlorophyll Fluorescence Monitor Based on Fraunhofer Line Principle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(S1): 248-251.
    [5]
    Köhler P, Guanter L, Joiner J. A Linear Method for the Retrieval of Sun-Induced Chlorophyll Fluorescence from GOME-2 and SCIAMACHY Data[J]. Atmospheric Measurement Techniques, 2015, 8(6): 2589-2608.
    [6]
    Guanter L, Alonso L, Gómez-Chova L, et al. Estimation of Solar-Induced Vegetation Fluorescence from Space Measurements[J]. Geophysical Research Letters, 2007, 34(8): L08401.
    [7]
    Joiner J, Guanter L, Lindstrot R, et al. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2[J]. Atmospheric Measurement Techniques, 2013, 6(10): 2803-2823.
    [8]
    王雅楠, 韦瑾, 汤旭光, 等. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用, 2020, 35(5): 975-989.

    Wang Yanan, Wei Jin, Tang Xuguang, et al. Progress of Using the Chlorophyll Fluorescence to Estimate Terrestrial Gross Primary Production[J]. Remote Sensing Technology and Application, 2020, 35(5): 975-989.
    [9]
    纪梦豪, 唐伯惠, 李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019, 34(3): 455-466.

    Ji Menghao, Tang Bohui, Li Zhaoliang. Review of Solar-induced Chlorophyll Fluorescence Retrieval Methods from Satellite Data[J]. Remote Sensing Technology and Application, 2019, 34(3): 455-466.
    [10]
    Frankenberg C, O'dell C, Berry J, et al. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2[J]. Remote Sensing of Environment, 2014, 147: 1-12.
    [11]
    Du S S, Liu L Y, Liu X J, et al. Retrieval of Global Terrestrial Solar-Induced Chlorophyll Fluorescence from TanSat Satellite[J]. Science Bulletin, 2018, 63(22): 1502-1512.
    [12]
    李恒凯, 吴冠华, 王秀丽. 面向开采扰动的离子型稀土矿区地表温度降尺度方法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 133-142.

    Li Hengkai, Wu Guanhua, Wang Xiuli. Land Surface Temperature Downscaling Method in Ion-type Rare Earth Mining Area Oriented to Mining Disturbance[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 133-142.
    [13]
    聂建亮, 武建军, 杨曦, 等. 基于地表温度-植被指数关系的地表温度降尺度方法研究[J]. 生态学报, 2011, 31(17): 4961-4969.

    Nie Jianliang, Wu Jianjun, Yang Xi, et al. Downscaling Land Surface Temperature Based on Relationship Between Surface Temperature and Vegetation Index[J]. Acta Ecologica Sinica, 2011, 31(17): 4961-4969.
    [14]
    尹枷愿, 蔡宏, 田鹏举, 等. 喀斯特地区地表温度空间降尺度方法初探[J]. 地理与地理信息科学, 2021, 37(2): 38-46.

    Yin Jiayuan, Cai Hong, Tian Pengju, et al. Spatial Downscaling Research of the Land Surface Temperature in Karst Region[J]. Geography and Geo-Information Science, 2021, 37(2): 38-46.
    [15]
    张宏文, 高艳红. 基于动力降尺度方法预估的青藏高原降水变化[J]. 高原气象, 2020, 39(3): 477-485.

    Zhang Hongwen, Gao Yanhong. Projected Changes of Precipitation over the Qinghai-Tibetan Plateau Based on Dynamical Downscaling[J]. Plateau Meteorology, 2020, 39(3): 477-485.
    [16]
    刘颖, 任宏利, 张培群, 等. 中国夏季降水的组合统计降尺度模型预测研究[J]. 气候与环境研究, 2020, 25(2): 163-171.

    Liu Ying, Ren Hongli, Zhang Peiqun, et al. Application of the Hybrid Statistical Downscaling Model in Summer Precipitation Prediction in China[J]. Climatic and Environmental Research, 2020, 25(2): 163-171.
    [17]
    Hu F M, Wei Z S, Zhang W, et al. A Spatial Downscaling Method for SMAP Soil Moisture Through Visible and Shortwave-Infrared Remote Sensing Data[J]. Journal of Hydrology, 2020, 590: 125360.
    [18]
    孙灏, 周柏池, 李欢, 等. 耦合MOD16和SMAP的微波土壤湿度降尺度研究[J]. 遥感学报, 2021, 25(3): 776-790.

    Sun Hao, Zhou Baichi, Li Huan, et al. A Primary Study on Downscaling Microwave Soil Moisture with MOD16 and SMAP[J]. National Remote Sensing Bulletin, 2021, 25(3): 776-790.
    [19]
    Gentine P, Alemohammad S H. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence[J]. Geophysical Research Letters, 2018, 45(7): 3136-3146.
    [20]
    Li X, Xiao J F. A Global, 0.05-Degree Product of Solar-Iinduced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data[J]. Remote Sensing, 2019, 11(5): 517-530.
    [21]
    沈洁, 辛晓平, 张景, 等. 基于Cubist的中国植被区域叶绿素荧光数据重建[J]. 遥感技术与应用, 2022, 37(1): 244-252.

    Shen Jie, Xin Xiaoping, Zhang Jing, et al. Reconstruction of SIF Remote Sensing Data of Vegetation in China Based on Cubist[J]. Remote Sensing Technology and Application, 2022, 37(1): 244-252.
    [22]
    Ma Y, Liu L Y, Chen R N, et al. Generation of a Global Spatially Continuous TanSat Solar-Iinduced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity[J]. Remote Sensing, 2020, 12(13): 2167.
    [23]
    方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019, 23(4): 756-772.

    Fang Xinrui, Wen Zhaofei, Chen Jilong, et al. Remote Sensing Estimation of Suspended Sediment Concentration Based on Random Forest Regression Model[J]. Journal of Remote Sensing, 2019, 23(4): 756-772.
    [24]
    Sun Y, Frankenberg C, Jung M, et al. Overview of Solar-Induced Chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, Cross-Mission Comparison, and Global Monitoring for GPP[J]. Remote Sensing of Environment, 2018, 209: 808-823.
    [25]
    Woodgate W, Suarez L, van Gorsel E, et al. Tri-PRI: A Three Band Reflectance Index Tracking Dynamic Photoprotective Mechanisms in a Mature Eucalypt Forest[J]. Agricultural and Forest Meteorology, 2019, 272/273: 187-201.
    [26]
    Yang P Q, Van der Tol C, Verhoef W, et al. Using Reflectance to Explain Vegetation Biochemical and Structural Effects on Sun-Induced Chlorophyll Fluorescence[J]. Remote Sensing of Environment, 2019, 231: 110996.
    [27]
    Zeng Y L, Badgley G, Dechant B, et al. A Practical Approach for Estimating the Escape Ratio of Near-Infrared Solar-Induced Chlorophyll Fluorescence[J]. Remote Sensing of Environment, 2019, 232: 111209.
    [28]
    Badgley G, Field C B, Berry J A. Canopy Near-Infrared Reflectance and Terrestrial Photosynthesis[J]. Science Advances, 2017, 3(3): e1602244.
    [29]
    Zhang Y G, Zhang Q, Liu L Y, et al. ChinaSpec: A Network for Long-Term Ground-Based Measurements of Solar-Induced Fluorescence in China[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(3): 126(3).
    [30]
    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
  • Related Articles

    [1]FANG Zhixiang, HUANG Shouqian, SU Rongxiang, XIAO Heping. Detecting Hierarchical Congestion Intervals Based on the Fusion of Multi-source Highway Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 682-690. DOI: 10.13203/j.whugis20190117
    [2]YANG Xuexi, XU Feng, SHI Yan, DENG Min. Field-Theory Based Spatial Outlier Detecting Method[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 364-371. DOI: 10.13203/j.whugis20150237
    [3]SHEN Yilang, AI Tinghua. Consistency Detecting and Measuring of Raster Map Annotations[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 737-743. DOI: 10.13203/j.whugis20150549
    [4]FAN Lihong, WANG Li, ZHANG Ming, ZHENG Zengji. A Combination of MW and Second-order Time-difference PhaseIonospheric Residual for Cycle Slip Detection and Repair[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 790-794. DOI: 10.13203/j.whugis20130521
    [5]Zhang Liangpei. Advance and Future Challenges in Hyperspectral Target Detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1377-1394+1400.
    [6]FANG Rongxin, SHI Chuang, WEI Na, ZHAO Qile. Real-time Cycle-slip Detection for Quality Control of GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1094-1097.
    [7]XU Xiaodong, ZHANG Xiaohong, CHENG Shilai. Detection of Multiple Echoes and Its Application in Filtering of Airborne Lidar[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 778-781.
    [8]YU Bo, LIU Yanchun, BIAN Gang, XIAO Fumin. Magnetism Detecting Method for Seabed Cable in Marine Engineering Surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 454-457.
    [9]LIU Jingnan, WEI Erhu, HUANG Jinsong, ZHANG Xiaohong. Applications of Selenodesy to Lunar Detection[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 95-100.
    [10]Shen Wenbin. On the Possibility of Using Tidal Gravimeter to Detect the Effect of the Gravitational Absorption[J]. Geomatics and Information Science of Wuhan University, 1988, 13(2): 49-56.

Catalog

    Article views (242) PDF downloads (77) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return