HUANG Wei, JIANG San, LIU Xianzheng, JIANG Wanshou. GNSS Constrained Self‑Calibration for Long Corridor UAV Image[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 197-207. DOI: 10.13203/j.whugis20210436
Citation: HUANG Wei, JIANG San, LIU Xianzheng, JIANG Wanshou. GNSS Constrained Self‑Calibration for Long Corridor UAV Image[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 197-207. DOI: 10.13203/j.whugis20210436

GNSS Constrained Self‑Calibration for Long Corridor UAV Image

More Information
  • Received Date: October 23, 2022
  • Available Online: October 20, 2022
  • Objectives 

    Camera self-calibration determines the precision of UAV (unmanned aerial vehicle) image AT (aerial triangulation). The UAV images collected from long transmission line corridors are critical configurations, which may lead to the “bowl effect” with camera self-calibration. To solve such problems, traditional methods rely on more than three GCPs (ground control points), while this study designs a new self-calibration method with only one GCP.

    Methods 

    First, two categories camera distortion models, i.e., physical and mathematical model, are studies in details. Second, within an incremental SfM (structure from motion) framework, a camera self-calibration method is designed, which combines the strategies for initializing camera distortion parameters and fusing high-precision GNSS (global navigation satellite system) observations.

    Results 

    The proposed algorithm is verified by using four UAV datasets collected from two sites based on two data acquisition modes. The experimental results show that the proposed method can dramatically alleviate the “bowl effect” and improve the accuracy of AT, and the horizontal and vertical accuracies reach 0.06 m, respectively, when using one GCP.

    Conclusions 

    compared with open-source and commercial software, the proposed method achieves competitive or better performance.

  • [1]
    裴慧坤, 姜三, 林国安, 等. 依托无人机倾斜摄影的电力走廊三维重建[J]. 测绘科学, 2016, 41(12): 292-296.

    Pei Huikun, Jiang San, Lin Guoan, et al. 3D Reconstruction of Transmission Route Based on UAV Oblique Photogrammetry[J]. Science of Surveying and Mapping, 2016, 41(12): 292-296.
    [2]
    Jiang S, Jiang W S, Huang W, et al. UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of Transmission Line[J]. Remote Sensing, 2017, 9(3): 278.
    [3]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513.

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Sci‍ence of Wuhan University, 2014, 39(5): 505-513.
    [4]
    Wu C C. Critical Configurations for Radial Distortion Self-Calibration[C]//IEEE Conference on Computer Vision and Pattern Recognition,Columbus, USA, 2014.
    [5]
    Zhou Y L, Rupnik E, Meynard C, et al. Simulation and Analysis of Photogrammetric UAV Image Blocks:Influence of Camera Calibration Error[J]. Remote Sensing, 2019, 12(1): 22.
    [6]
    Tournadre V, Pierrot-Deseilligny M, Faure P H. UAV Linear Photogrammetry[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015,3: 327-333.
    [7]
    Polic M, Steidl S, Albl C, et al. Uncertainty Based Camera Model Selection[C]// IEEE/CVF Confer‍ence on Computer Vision and Pattern Recognition, Seattle, USA, 2020.
    [8]
    Griffiths D, Burningham H. Comparison of Pre- and Self-Calibrated Camera Calibration Models for UAS-Derived Nadir Imagery for a SfM Application[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(2): 215-235.
    [9]
    Jaud M, Passot S, Le Bivic R, et al. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-optimal Survey Conditions[J]. Remote Sensing, 2016, 8(6): 465.
    [10]
    Salach A, Bakuła K, Pilarska M, et al. Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation[J]. ISPRS International Journal of Geo‑Information, 2018, 7(9): 342.
    [11]
    Jaud M, Passot S, Allemand P, et al. Suggestions to Limit Geometric Distortions in the Reconstruction of Linear Coastal Landforms by SfM Photogrammetry with PhotoScan® and MicMac® for UAV Surveys with Restricted GCPs Pattern[J]. Drones, 2018, 3(1): 2.
    [12]
    Nahon A, Molina P, Blázquez M, et al. Corridor Mapping of Sandy Coastal Foredunes with UAS Photogrammetry and Mobile Laser Scanning[J]. Remote Sensing, 2019, 11(11): 1352.
    [13]
    Duane C B. Close-Range Camera Calibration[J]. Photogramm Eng, 1971, 37(8): 855-866.
    [14]
    Fraser C S. Digital Camera Self-Calibration[J]. ISPRS Journal of Photogrammetry and Remote Sens‍ing, 1997, 52(4): 149-159.
    [15]
    Luhmann T, Robson S, Kyle S, et al. Close Range Photogrammetry: Principles, Techniques and Applications[M]. Dunbeath,UK: Whittles publishing, 2006.
    [16]
    Fitzgibbon A W. Simultaneous Linear Estimation of Multiple View Geometry and Lens Distortion[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Kauai,USA,2003.
    [17]
    Kukelova Z,Pajdla T.A Minimal Solution to the Autocalibration of Radial Distortion[C]// IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis, USA, 2007.
    [18]
    Kukelova Z, Pajdla T. A Minimal Solution to Radi‍al Distortion Autocalibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2410-2422.
    [19]
    Jiang F Y, Kuang Y B, Solem J E, et al. A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion[M]//Computer Vision:ACCV 2014. Cham: Springer International Publishing, 2015.
    [20]
    Kukelova Z, Heller J, Bujnak M, et al. Efficient Solution to the Epipolar Geometry for Radially Distort‍ed Cameras[C]//IEEE International Confer‍ence on Computer Vision,Santiago, Chile, 2015.
    [21]
    Ebner H.Self Calibrating Block Adjustment[J].Bildmessung und Luftbildwessen,1976(5):123-128.
    [22]
    Gruen A.Accuracy,Reliability and Statistics in Close-Range Photogrammetry[C].Inter-Congress Symposium of ISP Commission V, Stockholm, Sweden, 1978.
    [23]
    Tang R F, Fritsch D, Cramer M, et al. A Flexible Mathematical Method for Camera Calibration in Digital Aerial Photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(10): 1069-1077.
    [24]
    Tang R F, Fritsch D, Cramer M. New Rigorous and Flexible Fourier Self-Calibration Models for Airborne Camera Calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 71: 76-85.
    [25]
    Babapour H, Mokhtarzade M, Valadan Zoej M J. Self-Calibration of Digital Aerial Camera Using Combined Orthogonal Models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 29-39.
    [26]
    Lhuillier M. Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(12):2489-2495.
    [27]
    Gopaul N S, Wang J G, Hu B X. Camera Auto-Calibration in GPS/INS/Stereo Camera Integrated Kinematic Positioning and Navigation System[J]. The Journal of Global Positioning Systems, 2016, 14(1): 3.
    [28]
    袁修孝, 朱武, 武军郦, 等. 无地面控制GPS辅助光束法区域网平差[J]. 武汉大学学报(信息科学版), 2004, 29(10): 852-857.

    Yuan Xiuxiao, Zhu Wu, Wu Junli, et al. GPS-Supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Sci‍ence of Wuhan University, 2004, 29(10): 852-857.
    [29]
    Schönberger J L, Frahm J M. Structure-from-Motion Revisited[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, USA, 2016.
  • Related Articles

    [1]Yang Shuwen, Li Yikun, Liu Tao, Yao Huaqin. A New Automatic Water Body Feature Extraction MethodBased on SPOTS Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 308-314.
    [2]XU Chuang, LUO Zhicai, LIN Xu, ZHOU Boyang. Automatic Preprocessing of Tidal Gravity Observation Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 157-161.
    [3]XU Aiping, SHENG Wenshun, SHU Hong. Spatiotemporal Interpolation and Cross Validation Based on Product-Sum Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 766-769.
    [4]WANG Zhu, LI Shujun, ZHANG Lihua, LI Ning. A Method for Automatic Routing Based on Route Binary Tree[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 407-410.
    [5]Lin Zongjian, Zhang Jixian. An Algorithm for Automatic Location and Orientation in Pattern Designed Environment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 351-354,376.
    [6]Deng Dexiang, Li Yulin, Zhong Chengdong. An Advance Probe Method for Automatic Synthesize of Combinational Logic Circuitsc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 160-162.
    [7]Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.
    [8]Wang Qiao, Wu Hehai. The Research on Fractal Method of Automatic Generalization of Map Polygons[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 59-63.
    [9]Guo Renzhong, Wh Hehai. A Research on the Automatic Generalization of Urban Settlement on a Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 15-22.
    [10]Li Jinxiang, Su Guangkui, Chen Manling. Automatic Monitor System[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 46-54.
  • Cited by

    Periodical cited type(3)

    1. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    2. 刘焕玲,文汉江,徐新禹,赵永奇,蔡剑青. GOCE实测数据反演高阶重力场模型的Torus方法. 测绘学报. 2020(08): 965-973 .
    3. 景小阳,裴婧,许航,解文博. 使用Savitzky—Golay滤波器改进的位场ISVD算法. 工程地球物理学报. 2019(04): 486-493 .

    Other cited types(3)

Catalog

    Article views (979) PDF downloads (76) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return