HUANG Wei, JIANG San, LIU Xianzheng, JIANG Wanshou. GNSS Constrained Self‑Calibration for Long Corridor UAV Image[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 197-207. DOI: 10.13203/j.whugis20210436
Citation: HUANG Wei, JIANG San, LIU Xianzheng, JIANG Wanshou. GNSS Constrained Self‑Calibration for Long Corridor UAV Image[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 197-207. DOI: 10.13203/j.whugis20210436

GNSS Constrained Self‑Calibration for Long Corridor UAV Image

More Information
  • Received Date: October 23, 2022
  • Available Online: October 20, 2022
  • Objectives 

    Camera self-calibration determines the precision of UAV (unmanned aerial vehicle) image AT (aerial triangulation). The UAV images collected from long transmission line corridors are critical configurations, which may lead to the “bowl effect” with camera self-calibration. To solve such problems, traditional methods rely on more than three GCPs (ground control points), while this study designs a new self-calibration method with only one GCP.

    Methods 

    First, two categories camera distortion models, i.e., physical and mathematical model, are studies in details. Second, within an incremental SfM (structure from motion) framework, a camera self-calibration method is designed, which combines the strategies for initializing camera distortion parameters and fusing high-precision GNSS (global navigation satellite system) observations.

    Results 

    The proposed algorithm is verified by using four UAV datasets collected from two sites based on two data acquisition modes. The experimental results show that the proposed method can dramatically alleviate the “bowl effect” and improve the accuracy of AT, and the horizontal and vertical accuracies reach 0.06 m, respectively, when using one GCP.

    Conclusions 

    compared with open-source and commercial software, the proposed method achieves competitive or better performance.

  • [1]
    裴慧坤, 姜三, 林国安, 等. 依托无人机倾斜摄影的电力走廊三维重建[J]. 测绘科学, 2016, 41(12): 292-296.

    Pei Huikun, Jiang San, Lin Guoan, et al. 3D Reconstruction of Transmission Route Based on UAV Oblique Photogrammetry[J]. Science of Surveying and Mapping, 2016, 41(12): 292-296.
    [2]
    Jiang S, Jiang W S, Huang W, et al. UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of Transmission Line[J]. Remote Sensing, 2017, 9(3): 278.
    [3]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513.

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Sci‍ence of Wuhan University, 2014, 39(5): 505-513.
    [4]
    Wu C C. Critical Configurations for Radial Distortion Self-Calibration[C]//IEEE Conference on Computer Vision and Pattern Recognition,Columbus, USA, 2014.
    [5]
    Zhou Y L, Rupnik E, Meynard C, et al. Simulation and Analysis of Photogrammetric UAV Image Blocks:Influence of Camera Calibration Error[J]. Remote Sensing, 2019, 12(1): 22.
    [6]
    Tournadre V, Pierrot-Deseilligny M, Faure P H. UAV Linear Photogrammetry[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015,3: 327-333.
    [7]
    Polic M, Steidl S, Albl C, et al. Uncertainty Based Camera Model Selection[C]// IEEE/CVF Confer‍ence on Computer Vision and Pattern Recognition, Seattle, USA, 2020.
    [8]
    Griffiths D, Burningham H. Comparison of Pre- and Self-Calibrated Camera Calibration Models for UAS-Derived Nadir Imagery for a SfM Application[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(2): 215-235.
    [9]
    Jaud M, Passot S, Le Bivic R, et al. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-optimal Survey Conditions[J]. Remote Sensing, 2016, 8(6): 465.
    [10]
    Salach A, Bakuła K, Pilarska M, et al. Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation[J]. ISPRS International Journal of Geo‑Information, 2018, 7(9): 342.
    [11]
    Jaud M, Passot S, Allemand P, et al. Suggestions to Limit Geometric Distortions in the Reconstruction of Linear Coastal Landforms by SfM Photogrammetry with PhotoScan® and MicMac® for UAV Surveys with Restricted GCPs Pattern[J]. Drones, 2018, 3(1): 2.
    [12]
    Nahon A, Molina P, Blázquez M, et al. Corridor Mapping of Sandy Coastal Foredunes with UAS Photogrammetry and Mobile Laser Scanning[J]. Remote Sensing, 2019, 11(11): 1352.
    [13]
    Duane C B. Close-Range Camera Calibration[J]. Photogramm Eng, 1971, 37(8): 855-866.
    [14]
    Fraser C S. Digital Camera Self-Calibration[J]. ISPRS Journal of Photogrammetry and Remote Sens‍ing, 1997, 52(4): 149-159.
    [15]
    Luhmann T, Robson S, Kyle S, et al. Close Range Photogrammetry: Principles, Techniques and Applications[M]. Dunbeath,UK: Whittles publishing, 2006.
    [16]
    Fitzgibbon A W. Simultaneous Linear Estimation of Multiple View Geometry and Lens Distortion[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Kauai,USA,2003.
    [17]
    Kukelova Z,Pajdla T.A Minimal Solution to the Autocalibration of Radial Distortion[C]// IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis, USA, 2007.
    [18]
    Kukelova Z, Pajdla T. A Minimal Solution to Radi‍al Distortion Autocalibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2410-2422.
    [19]
    Jiang F Y, Kuang Y B, Solem J E, et al. A Minimal Solution to Relative Pose with Unknown Focal Length and Radial Distortion[M]//Computer Vision:ACCV 2014. Cham: Springer International Publishing, 2015.
    [20]
    Kukelova Z, Heller J, Bujnak M, et al. Efficient Solution to the Epipolar Geometry for Radially Distort‍ed Cameras[C]//IEEE International Confer‍ence on Computer Vision,Santiago, Chile, 2015.
    [21]
    Ebner H.Self Calibrating Block Adjustment[J].Bildmessung und Luftbildwessen,1976(5):123-128.
    [22]
    Gruen A.Accuracy,Reliability and Statistics in Close-Range Photogrammetry[C].Inter-Congress Symposium of ISP Commission V, Stockholm, Sweden, 1978.
    [23]
    Tang R F, Fritsch D, Cramer M, et al. A Flexible Mathematical Method for Camera Calibration in Digital Aerial Photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(10): 1069-1077.
    [24]
    Tang R F, Fritsch D, Cramer M. New Rigorous and Flexible Fourier Self-Calibration Models for Airborne Camera Calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 71: 76-85.
    [25]
    Babapour H, Mokhtarzade M, Valadan Zoej M J. Self-Calibration of Digital Aerial Camera Using Combined Orthogonal Models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 29-39.
    [26]
    Lhuillier M. Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(12):2489-2495.
    [27]
    Gopaul N S, Wang J G, Hu B X. Camera Auto-Calibration in GPS/INS/Stereo Camera Integrated Kinematic Positioning and Navigation System[J]. The Journal of Global Positioning Systems, 2016, 14(1): 3.
    [28]
    袁修孝, 朱武, 武军郦, 等. 无地面控制GPS辅助光束法区域网平差[J]. 武汉大学学报(信息科学版), 2004, 29(10): 852-857.

    Yuan Xiuxiao, Zhu Wu, Wu Junli, et al. GPS-Supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Sci‍ence of Wuhan University, 2004, 29(10): 852-857.
    [29]
    Schönberger J L, Frahm J M. Structure-from-Motion Revisited[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, USA, 2016.
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views PDF downloads Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return