Citation: | REN Shiman, ZHU Jun, FANG Zheng, LI Chuangnong, LIANG Ce, XIE Yakun, LI Weilian, ZHANG Tianyi. Woodland Extraction of SPOT7 Image Based on Multi-scale Attention Mechanism and Edge Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1951-1958. DOI: 10.13203/j.whugis20210251 |
As woodland is an important natural and economic resource of China, it is important to understand the distribution of woodland for the investigation and management of woodland resources.We design a woodland extraction method combining multi-scale attention mechanism and edge constraint to tackle the issue of low accuracy and irregular boundaries in traditional forest extraction methods.
First, an end-to-end multi-scale attentional neural network model is constructed to fully extract the context features of woodland in remote sensing images, and semantically describe woodland at different scales to achieve high-precision pixel-level expression of woodland. Second, the edge constraint rules are constructed to optimize the boundary of the extraction results, to improve the readability of the extraction results. To prove the effectiveness of the proposed method, Santai County, Mianyang City, Sichuan Province, China is taken as the experimental area to establish datasets and carry out woodland extraction experiments.
The results show that the extraction accuracy of this method is 81.9%, the recall rate is 75.6%, F1 score is 78.1%, intersection of union is 64.2%.
The propsed method has a better effect in the application of woodland extraction with remote sensing image.
[1] |
国务院办公厅. 国务院常务会议通过全国林地保护利用规划纲要[EB/OL]. (2010-06-09)[2021-03-02]. http://www.gov.cn/ldhd/2010-06/09/content_1623921.htm,2010.
General Office of the State Council of the People's Republic of China. The Executive Meeting of the State Council Passed the Outline of the National Plan for the Protection and Utilization of Woodland[EB/OL] 2010-06-09)[2021-03-02]. http://www.gov.cn/ldhd/2010-06/09/content_1623921.htm,2010.
|
[2] |
陈周, 费鲜芸, 高祥伟, 等. 高分辨率遥感影像分割的城市绿地提取研究[J]. 测绘通报, 2020(12): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202012004.htm
Chen Zhou, Fei Xianyun, Gao Xiangwei, et al. Extraction of Urban Green Space with High Resolution Remote Sensing Image Segmentation[J]. Bulletin of Surveying and Mapping, 2020(12): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202012004.htm
|
[3] |
徐青. 基于注意力机制的高分辨率遥感影像植被提取研究[D]. 武汉: 武汉大学, 2020.
Xu Qing. Research on Vegetation Extraction of High Resolution Remote Sensing Image Based on Attention Model[D]. Wuhan: Wuhan University, 2020.
|
[4] |
黄杰. 基于OBIA-CNN的高分二号卫星影像林地类型识别[D]. 北京: 中国地质大学(北京), 2020.
Huang Jie. Determining Various Forest Types from Gaofen-2 Satellite Image Using Object Based CNN[D]. Beijing: China University of Geosciences, 2020.
|
[5] |
孙建国, 艾廷华, 王沛, 等. 基于NDVI-气候变量特征空间的植被退化评价[J]. 武汉大学学报(信息科学版), 2008, 33(6): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200806007.htm
Sun Jianguo, Ai Tinghua, Wang Pei, et al. Assessing Vegetation Degradation Based on NDVI-Climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200806007.htm
|
[6] |
Cheng K, Wang J L. Forest Type Classification Based on Integrated Spectral-Spatial-Temporal Features and Random Forest Algorithm: A Case Study in the Qinling Mountains[J]. Forests, 2019, 10(7): 559. doi: 10.3390/f10070559
|
[7] |
Kim C, Hong S H. The Characterization of a Forest Cover Through Shape and Texture Parameters from Quickbird Imagery[C]//IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008.
|
[8] |
王春艳, 刘佳新, 徐爱功, 等. 一种新的高分辨率遥感影像模糊监督分类方法[J]. 武汉大学学报(信息科学版), 2018, 43(6): 922-929. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201806017.htm
Wang Chunyan, Liu Jiaxin, Xu Aigong, et al. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201806017.htm
|
[9] |
程诗尧, 梅天灿, 刘国英. 顾及结构特征的多层次马尔科夫随机场模型在影像分类中的应用[J]. 武汉大学学报(信息科学版), 2015, 40(9): 1180-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201509008.htm
Cheng Shiyao, Mei Tiancan, Liu Guoying. Application of Multi-level MRF Using Structural Feature to Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1180-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201509008.htm
|
[10] |
侯逸晨, 赵鹏祥, 杨伟志, 等. 基于SVM的资源三号影像林地分类及精度评价研究[J]. 西北林学院学报, 2016, 31(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201601033.htm
Hou Yichen, Zhao Pengxiang, Yang Weizhi, et al. Forest Classification and Accuracy Assessment in ZY3 Image with SVM Method[J]. Journal of Northwest Forestry University, 2016, 31(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201601033.htm
|
[11] |
刘晓娜, 封志明, 姜鲁光. 基于决策树分类的橡胶林地遥感识别[J]. 农业工程学报, 2013, 29(24): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201324022.htm
Liu Xiaona, Feng Zhiming, Jiang Luguang. Application of Decision Tree Classification to Rubber Plantations Extraction with Remote Sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 163-172. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201324022.htm
|
[12] |
Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
|
[13] |
Kattenborn T, Leitloff J, Schiefer F, et al. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49.
|
[14] |
Huang B, Zhao B, Song Y M. Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[J]. Remote Sensing of Environment, 2018, 214: 73-86.
|
[15] |
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020, 45(2): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002011.htm
Ji Shunping, Tian Siqi, Zhang Chi. Urban Land Cover Classification and Change Detection Using Fully Atrous Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002011.htm
|
[16] |
Schiefer F, Kattenborn T, Frick A, et al. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 205-215.
|
[17] |
Gui Y Y, Li W, Wang Y N, et al. Woodland Detection Using Most-Sure Strategy to Fuse Segmentation Results of Deep Learning[C]//IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
|
[18] |
He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE Confe‑ rence on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.
|
[19] |
宫一平. 基于上下文感知的高分辨率遥感影像目标检测[D]. 武汉: 武汉大学, 2018.
Gong Yiping. Context Aware CNN for Object Detection from VHR Remote Sensing Imagery[D]. Wuhan: Wuhan University, 2018.
|
[20] |
李昌英. 基于上下文信息的语义图像分类研究[D]. 杭州: 浙江大学, 2014.
Li Changying. Research on Semantic Image Classification Based on Context Information[D]. Hangzhou: Zhejiang University, 2014.
|
[21] |
李建. 三台县林业产业发展现状及对策[J]. 乡村科技, 2018(16): 50-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XCKJ201816038.htm
Li Jian. Present Situation and Countermeasures of Forestry Industry Development in Santai County[J]. Rural Science and Technology, 2018(16): 50-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XCKJ201816038.htm
|
[22] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015.
|
[23] |
Xie S N, Girshick R, Dollár P, et al. Aggregated Residual Transformations for Deep Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017.
|
[1] | LU Xiaoping, LU Yao, JIAO Jinlong, TONG Xiaohua, ZHANG Jixian. Key Frame Extraction Algorithm for Video Images Based on Correlation Coefficient of Overlap Regions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 260-267. DOI: 10.13203/j.whugis20170038 |
[2] | LI Jiatian, LUO Fuli, YU Li, ZHANG Lan, KANG Shun, LIN Yan. The Gradient Voronoi Diagram and Construction Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 163-170. DOI: 10.13203/j.whugis20140025 |
[3] | SHEN Jingwei, ZHOU Tinggang, WU Mingguang, GU Jingyi. Application of 3D Voronoi Diagram to Direction Relation Calculation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 746-750. |
[4] | WANG Zhonghui, YAN Haowen. Computation of Direction Relations Between Object Groups Based on Direction Voronoi Diagram Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 584-588. |
[5] | YAN Chaode, BAI Jianjun, ZHAO Renliang. Voronoi-based Distribution Measure of Point Objects in Adjacent Space[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 48-51. |
[6] | YAN Haowen, GUO Renzhong. A Formal Description Model of Directional Relationships Based on Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 468-471,479. |
[7] | YAN Haowen, GUO Renzhong. Theorization of Directional Relationship Description Based on Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 306-310. |
[8] | Li Chengming, Chen Jun. Raster-based Method for Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 1998, 23(3): 208-210. |
[9] | Li chengming, Chen Jun, Zhu Yinghao. Spatial Adjancency Query Based on Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 128-131. |
[10] | Chen Jun, Cui Bingliang. Using Voronoi Approach of Developing Topological Functions in MapInfo[J]. Geomatics and Information Science of Wuhan University, 1997, 22(3): 195-200,211. |