JIANG Dong, ZHAO Wenji, WANG Yanhui, WAN Biyu. Analysis of Urban Road Spatiotemporal Situation by Geographically Weighted Regression with Spatial Grid Computing Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 988-996. DOI: 10.13203/j.whugis20210173
Citation: JIANG Dong, ZHAO Wenji, WANG Yanhui, WAN Biyu. Analysis of Urban Road Spatiotemporal Situation by Geographically Weighted Regression with Spatial Grid Computing Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 988-996. DOI: 10.13203/j.whugis20210173

Analysis of Urban Road Spatiotemporal Situation by Geographically Weighted Regression with Spatial Grid Computing Method

More Information
  • Received Date: June 09, 2022
  • Available Online: May 19, 2022
  • Published Date: June 04, 2023
  •   Objectives  With the rapid development of urbanization, traffic congestion has become a common problem faced by big cities all over the world. Scientific analysis of road network carrying capacity and traffic impact factors is a prerequisite for optimizing the spatial allocation of road traffic factors. How to give full play to the advantages of spatial information technology, efficiently and accurately analyze the balance of regional road network carrying capacity, and find the spatial change relationship between traffic state and influencing factors, is very important for alleviating urban traffic congestion.
      Methods  The road grid geographically weighted regression (RG-GWR) analysis method is proposed. The carrying capacity ratio of regional road network is calculated by the nine-grids model composed of two kinds of nested grids. By calculating the carrying capacity ratio of the central cell of the nine grids and analyzing the ratio according to the law of conservation of flow, the unbalanced area of road network configuration is identified. By analyzing the regression relationship between the grid cell traffic situation and the influencing factors, the traffic space-time operation situation is obtained. Taking Chengdu city as an example, three grid models with different sizes are constructed.
      Results  The results match the actual road conditions of AMap by 62.5% and 87.5%, respectively. By further analyzing the traffic influencing factors, the fitting degree of RG-GWR model in traffic situation of different periods could be more than 80%.
      Conclusions  The grid model is an efficient and feasible method to analyze the road network carrying capacity and traffic impact factors from the perspective of space and has a broad prospect to serve the intelligent platform and intelligent transportation.
  • [1]
    邓敏, 陈雪莹, 唐建波, 等. 一种顾及道路交通流量语义信息的路网选取方法[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1438-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202009014.htm

    Deng Min, Chen Xueying, Tang Jianbo, et al. A Method for Road Network Selection Considering the Traffic Flow Semantic Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1438-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202009014.htm
    [2]
    李志学, 莫文波, 周松林, 等. 空间主成分分析的城市生活便利度指数研究: 以长沙市为例[J]. 测绘地理信息, 2021, 46(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202102026.htm

    Li Zhixue, Mo Wenbo, Zhou Songlin, et al. Urban Life Convenience Index Based on Spatial Principal Component Analysis: A Case Study of Changsha City[J]. Journal of Geomatics, 2021, 46(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202102026.htm
    [3]
    周璐瑶, 刘艳芳, 刘耀林, 等. 多中心视角下的武汉市路网与经济活动空间关系分析[J]. 测绘地理信息, 2020, 45(2): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202002003.htm

    Zhou Luyao, Liu Yanfang, Liu Yaolin, et al. Analysis of the Spatial Relationships Between Road Network and Economic Activities from the Polycentric Perspective in Wuhan[J]. Journal of Geomatics, 2020, 45(2): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202002003.htm
    [4]
    Nanaki E A, Koroneos C J, Roset J, et al. Environmental Assessment of 9 European Public Bus Transportation Systems[J]. Sustainable Cities and Society, 2017, 28: 42-52. doi: 10.1016/j.scs.2016.08.025
    [5]
    张彭, 孙建平, 雷方舒, 等. 基于边界速度的城市路网承载力估计方法[J]. 交通运输研究, 2018, 4(6): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201806005.htm

    Zhang Peng, Sun Jianping, Lei Fangshu, et al. Estimation Algorithm of Urban Road Network Capacity Based on Boundary Network Velocity[J]. Transport Research, 2018, 4(6): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH201806005.htm
    [6]
    张丽平, 张晓娇, 金飞虎, 等. 路网环境下的混合数据最近邻查询算法[J]. 武汉大学学报(信息科学版), 2022, 47(4): 589-596. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202204013.htm

    Zhang Liping, Zhang Xiaojiao, Jin Feihu, et al. Nearest Neighbor Query Algorithm of Mixed Data in Road Network[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 589-596. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202204013.htm
    [7]
    苏飞, 董宏辉, 贾利民, 等. 基于时空相关性的城市交通路网关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(3): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703032.htm

    Su Fei, Dong Honghui, Jia Limin, et al. Identification of Critical Section in Urban Traffic Road Network Based on Space-time Correlation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703032.htm
    [8]
    戚铭尧, 樊艳伟, 彭昕, 等. 一种基于交通网络的时空棱柱表示[J]. 武汉大学学报(信息科学版), 2010, 35(12): 1491-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012026.htm

    Qi Mingyao, Fan Yanwei, Peng Xin, et al. A New Representation of Space Time Prism Based on Transportation Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(12): 1491-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012026.htm
    [9]
    李德仁, 邵振峰, 朱欣焰. 论空间信息多级格网及其典型应用[J]. 武汉大学学报(信息科学版), 2004, 29(11): 945-950. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200411001.htm

    Li Deren, Shao Zhenfeng, Zhu Xinyan. Spatial Information Multi-grid and Its Typical Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 945-950. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200411001.htm
    [10]
    纪翔峰, 张健, 冉斌. 基于流体逼近的路段交通流动态加载研究[J]. 交通运输系统工程与信息, 2015, 15(5): 195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201505028.htm

    Ji Xiangfeng, Zhang Jian, Ran Bin. Dynamic Link Traffic Flow Loading Based on Fluid Approximation[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201505028.htm
    [11]
    盛宇裕, 毕硕本, 范京津, 等. 运用交通运行状况指标分析交通热点时空模式[J]. 武汉大学学报(信息科学版), 2021, 46(5): 746-754. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202105016.htm

    Sheng Yuyu, Bi Shuoben, Fan Jingjin, et al. Analyzing Spatiotemporal Patterns of Traffic Hotspots Using Traffic Operation Indicators[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 746-754. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202105016.htm
    [12]
    彭明军. 利用层次空间推理进行城市空间信息多级网格划分[J]. 武汉大学学报(信息科学版), 2010, 35(9): 1112-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201009030.htm

    Peng Mingjun. Division of Urban Spatial Information Multi-grid Based on Hierarchical Spatial Reasoning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1112-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201009030.htm
    [13]
    闫学东, 刘晓冰, 刘炀, 等. 基于浮动车大数据与网格模型的城市交通拥堵识别和评价研究[J]. 北京交通大学学报, 2019, 43(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201901012.htm

    Yan Xuedong, Liu Xiaobing, Liu Yang, et al. Identification and Evaluation of Urban Traffic Congestion Based on the Big Data of Floating Vehicles and Grid Modeling[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201901012.htm
    [14]
    邓娜. 基于自组织临界性的城市交通路网承载力计算方法研究[D]. 北京: 北京交通大学, 2018.

    Deng Na. Research on the Calculation Method of Urban Traffic Road Network Carrying Capacity Based on the Self-organized Criticality[D]. Beijing: Beijing Jiaotong University, 2018.
    [15]
    Brunsdon C, Stewart Fotheringham A, Charlton M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 2010, 28(4): 281-298.
    [16]
    王旭, 林征, 张志, 等. 基于GWR模型的北极滨海平原融冻湖表面温度空间分布模拟[J]. 武汉大学学报(信息科学版), 2016, 41(7): 918-924. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201607010.htm

    Wang Xu, Lin Zheng, Zhang Zhi, et al. Modelling the Spatial Distribution of Lake Surface Water Temperature of the Thaw Lakes in Arctic Coastal Plain Using Geographically Weighted Regression Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 918-924. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201607010.htm
    [17]
    王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202008008.htm

    Wang Xiaoxu, Wang Lizhen, Wang Jialong. Mining Spatio-temporal Co-location Fuzzy Congestion Patterns from Traffic Datasets[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8): 683-692. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202008008.htm
  • Cited by

    Periodical cited type(4)

    1. 陈龙高,林莹,杨小艳,徐伟义,曲子文,潘怡莎,杜漩. 耕地利用中要素投入与作物产出的碳排放/吸收贡献及其影响因素——以江苏省为例. 中国土地科学. 2025(01): 130-140 .
    2. 杨文睿,任周桥,何建华. 顾及生活服务设施供需服务水平的空间差异性分析——以武汉市江汉区为例. 武汉大学学报(信息科学版). 2024(03): 473-481 .
    3. 陈龙高,王欣瑶,杨小艳,吴海倩,林莹,陈龙乾. 耕地变化碳效应及其驱动力影响的时空分异——以江苏为例. 长江流域资源与环境. 2024(09): 1953-1968 .
    4. 卢北,曾俊伟,钱勇生,魏谞婷,杨民安,李海军. 兰州市主城区路网形态对城市活力的影响分析. 干旱区地理. 2023(08): 1333-1343 .

    Other cited types(3)

Catalog

    Article views (1073) PDF downloads (113) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return