Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents

Wang Leyang, Sun Longxiang, Xu Guangyu. Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210114
Citation: Wang Leyang, Sun Longxiang, Xu Guangyu. Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210114

Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements

doi: 10.13203/j.whugis20210114
Funds:

The National Natural Science Foundation of China (Nos.42174011, 41874001, 42104008), the Innovation Found Designated for Graduate Students in Jiangxi Province (YC2020-S500).

  • Received Date: 2021-12-13
    Available Online: 2022-01-14
  • Objectives: With the improvement of geodetic observation accuracy, higher requirements are put forward for the seismic inversion algorithm. Methods: In view of this problem, we successfully develop a novel Grey Wolf Optimization (GWO) algorithm to invert the seismic source parameters. The weighted distance Grey Wolf Optimization (wdGWO) algorithm with the strategy of the nonlinear decreasing convergence factor based on the cosine law is proposed to instead that of the original linear decreasing. Subsequently, a combination approach with the improved wdGWO algorithm and the Simplex algorithm is configured and the introduction of the latter algorithm is to stabilize the performance of the proposed wdGWO algorithm. Thus, the combination algorithm has better advantages for both convergence and stability. Finally, we achieve synthetic tests to evaluate the performance of the basic wdGWO algorithm, the genetic algorithm and the combination algorithm. Results: The simulated experimental results show that the estimation of seismic source parameters via the proposed algorithm is superior to the wdGWO algorithm, which expresses excellent stability and accuracy. On the other hand, the stability of seismic source parameters is validated between the combination algorithm and the genetic algorithm, and we find the superiority of the combination algorithm. Furthermore, the availability of the combination algorithm is tested by the 2014 Napa earthquake and the 2017 Bodrum-Kos earthquake. The results show that the combination algorithm can achieve the inversion precision of genetic algorithm, and exhibit better parameters stability. Conclusions: Considering the accuracy and stability of the inversion results is particularly important for the accurate determination of seismic source parameters, the combination algorithm has potential applications in the inversion of seismic source parameters.
  • [1] Bagnardi M, Hooper A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties:A Bayesian Approach[J]. Geochemistry Geophysics Geosystems, 2018, 19(7):2194-2211.
    [2] Wang Leyang, Zhao Xiong, Gao Hua. A Method for Determining the Regularization Parameter and the Relative Weight Ratio of the Seismic Slip Distribution with Multi-source Data[J]. Journal of Geodynamics, 2018, 118(7), 1-10.
    [3] Wang Leyang, Gao Hua, Feng Guangcai, Xu Wenbin. Source Parameters and Triggering Links of the Earthquake Sequence in Central Italy from 2009 to 2016 Analyzed with GPS and InSAR Data[J]. Tectonphysics, 2018, 744:285-295.
    [4] Wang Leyang, Zhao Xiong. Determination of Smoothing Factor for the Inversion of Co-seismic Slip Distribution[J]. Journal of Geodesy and Geo-information Science, 2020, 3(1):25-35.
    [5] Amey R M J, Hooper A, Walters R J. A Bayesian Method for Incorporating Self-similarity into Earthquake Slip Inversions[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(7):6052-6071.
    [6] Xu Guangyu, Xu Caijun, Wen Yangmao, et al. Coseismic and Postseismic Deformation of the 2016 MW 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):4250-4272.
    [7] Okada, Y. Surface Deformation to Shear and Tensile Faults in a Halfspace[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154.
    [8] Okada Y. Internal Deformation Due to Shear and Tensile Fault in a Half Space[J]. Bulletin of the Seismolog-ical Society of America, 1992, 92(2):1018-1040.
    [9] Wright T J, Lu Z, Wicks C. Source Model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. Geophysical. Research. Letters, 2003, 30(18):381-398.
    [10] Jonsson S, Zebker H, Segall P, Amelung F. Fault Slip Distribution of the 1999 Mw71 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389.
    [11] Pedersen R, Jónsson S, Árnadóttir T, et al. Fault Slip Distribution of Two June 2000 Mw6.5 Earthquakes in South Iceland Estimated from Joint Inversion of InSAR and GPS Measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4):487-502.
    [12] Nunnari G, Puglisi G, Guglielmino F. Inversion of SAR Data in Active Volcanic Areas by Optimization Techniques[J]. Nonlinear Processes in Geophysics, 2005, 12(6):863-870.
    [13] Marchandon M, Vergnolle M, Sudhaus H, et al. Fault Geometry and Slip Distribution at Depth of the 1997 Mw 7.2 Zirkuh Earthquake:Contribution of near-field displacement data[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):1904-1924.
    [14] Xu Guangyu, Xu Caijun, Wen Yangmao, et al. Source Parameters of the 2016-2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data[J]. Remote Sensing, 2017, 9(11):1182.
    [15] Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
    [16] Tawhid M A, Ali A F. A Hybrid Grey Wolf Optimizer and Genetic Algorithm for Minimizing Potential Energy Function[J]. Memetic Computing, 2017, 9(4):347-359.
    [17] Rex C R E S, Beno M M, Annrose J. Optimal Power Flow-Based Combined Economic and Emission Dispatch Problems Using Hybrid PSGWO Algorithm[J]. Journal of Circuits, Systems, and Computers, 2019, 28(9):1-17.
    [18] ElGayyar M, Emary E, Sweilam N H, et al. A Hybrid Grey Wolf-bat Algorithm for Global Optimization[C]//International Conference on Advanced Machine Learning Technologies and Applications. Springer, Cham, 2018:3-12.
    [19] Routray A, Singh R K, Mahanty R. Harmonic Reduction in Hybrid Cascaded Multilevel Inverter Using Modified Grey Wolf Optimization[J]. IEEE Transactions on Industry Applications, 2019, 56(2):1827-1838.
    [20] Mahalingam T, Subramoniam M. A Hybrid Gray Wolf and Genetic Whale Optimization Algorithm for Efficient Moving Object Analysis[J]. Multimedia Tools and Applications, 2019, 78(12).
    [21] Devarapalli R, Bhattacharyya B. A Hybrid Modified Grey Wolf Optimization-Sine Cosine Algorithm-Based Power System Stabilizer Parameter Tuning in A Multimachine Power System[J]. Optimal Control Applications and Methods, 2020.
    [22] Malik M R S, Mohideen E R, Ali L. Weighted Distance Grey Wolf Optimizer for Global Optimization Problems[C].//2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2015:1-6.
    [23] Wang Leyang, Ding Rui. Inversion and Precision Estimation of Earthquake Fault Parameters Based on Scaled Unscented Transformation and Hybrid PSO/Simplex Algorithm with GPS Measurement Data[J]. Measurement, 2020, 153:107422.
    [24] Brocher T M, Baltay A S, Hardebeck J L, et al. The Mw6.024 August 2014 South Napa Earthquake[J]. Ssmological Research Letters, 2015, 86(2A):309-326.
    [25] Dreger D S, Huang M H, Rodgers A, et al. Kinematic Finite-Source Model for the 24 August 2014 South Napa, California, Earthquake from Joint Inversion of Seismic, GPS, and InSAR Data[J]. Seismological Research Letters, 2015, 86(2A):327-334.
    [26] Feng Guangcai, Li Zhiwei, Shan Xinjian, et al. Source Parameters of the 2014 Mw 6.1 South Napa Earthquake Estimated from the Sentinel 1A, COSMO-SkyMed and GPS data[J]. Tectonophysics, 2015, 655:139-146.
    [27] Willmott C J, Ackleson S G, Davis R E, et al. Statistics for the evaluation and comparison of models[J]. Journal of Geophysical Research:Oceans, 1985, 90(C5):8995-9005.
    [28] Konca A O, Guvercin S E, Ozarpaci S, et al. Slip Distribution of the 2017 Mw6.6 Bodrum-Kos Earthquake:Resolving the Ambiguity of Fault Geometry[J]. Geophysical Journal International, 2019, 219(2):911-923.
    [29] USGS. Earthquake catalog released by U.S. Geological Survey[DB/OL].(2017-07-20)[2020-08-12)].https://earthquake.usgs.gov/earthquakes/eventpage/us20009ynd/executive
    [30] Tiryakioğlu İ, Aktuğ B, Yiğit C Ö, et al. Slip Distribution and Source Parameters of the 20 July 2017 Bodrum-Kos Earthquake (Mw6.6) from GPS Observations[J]. Geodinamica Acta, 2017, 30(1):1-14.
    [31] Aktug, B, Kaypak, B, Çelik, R. N. Source Parameters for the Mw=6.6, 03 February 2002, Çay Earthquake (Turkey) and Aftershocks from GPS, Southwestern Turkey[J]. Journal of Seismology, 2010, 14(3):445-456.
    [32] Karasözen E, Nissen E, Büyükakpınar P, et al. The 2017 July 20 Mw 6.6 Bodrum-Kos Earthquake Illuminates Active Faulting in the Gulf of Gökova, SW Turkey[J]. Geophysical Journal International, 2018, 214(1):185-199.
    [33] Zhao, Yingwen, Xu Caijun. Adaptive Multistart Gauss-Newton approach for Geodetic Data Inversion of Earthquake Source Parameters[J]. Journal of Geodesy, 2020, 94(2):17.
    [34] Ganas A, Elias P, Valkaniotis S, et al. Co-seismic deformation and preliminary fault model of the July 20, 2017 M6.6 Kos earthquake, Aegean Sea[J]. EMSC, 2017.
    [35] Ganas A, Elias P, Kapetanidis V, et al. The July 20, 2017 M6.6 Kos earthquake:seismic and geodetic evidence for an active north-dipping normal fault at the western end of the Gulf of Gökova (SE Aegean Sea)[J]. Pure and Applied Geophysics, 2019, 176(10):4177-4211.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(202) PDF downloads(16) Cited by()

Related
Proportional views

Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements

doi: 10.13203/j.whugis20210114
Funds:

The National Natural Science Foundation of China (Nos.42174011, 41874001, 42104008), the Innovation Found Designated for Graduate Students in Jiangxi Province (YC2020-S500).

Abstract: Objectives: With the improvement of geodetic observation accuracy, higher requirements are put forward for the seismic inversion algorithm. Methods: In view of this problem, we successfully develop a novel Grey Wolf Optimization (GWO) algorithm to invert the seismic source parameters. The weighted distance Grey Wolf Optimization (wdGWO) algorithm with the strategy of the nonlinear decreasing convergence factor based on the cosine law is proposed to instead that of the original linear decreasing. Subsequently, a combination approach with the improved wdGWO algorithm and the Simplex algorithm is configured and the introduction of the latter algorithm is to stabilize the performance of the proposed wdGWO algorithm. Thus, the combination algorithm has better advantages for both convergence and stability. Finally, we achieve synthetic tests to evaluate the performance of the basic wdGWO algorithm, the genetic algorithm and the combination algorithm. Results: The simulated experimental results show that the estimation of seismic source parameters via the proposed algorithm is superior to the wdGWO algorithm, which expresses excellent stability and accuracy. On the other hand, the stability of seismic source parameters is validated between the combination algorithm and the genetic algorithm, and we find the superiority of the combination algorithm. Furthermore, the availability of the combination algorithm is tested by the 2014 Napa earthquake and the 2017 Bodrum-Kos earthquake. The results show that the combination algorithm can achieve the inversion precision of genetic algorithm, and exhibit better parameters stability. Conclusions: Considering the accuracy and stability of the inversion results is particularly important for the accurate determination of seismic source parameters, the combination algorithm has potential applications in the inversion of seismic source parameters.

Wang Leyang, Sun Longxiang, Xu Guangyu. Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210114
Citation: Wang Leyang, Sun Longxiang, Xu Guangyu. Combinations of the simplex and weighted distance-based grey wolf algorithms for the seismic source parameter inversion with GPS measurements[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20210114
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return