GAO Yuan, ZHU Yanan, CHEN Chuanfa, HU Zhanzhan, HU Baojian. A Weighted Radial Basis Function Interpolation Method for High Accuracy DEM Modeling[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1373-1379. DOI: 10.13203/j.whugis20210100
Citation: GAO Yuan, ZHU Yanan, CHEN Chuanfa, HU Zhanzhan, HU Baojian. A Weighted Radial Basis Function Interpolation Method for High Accuracy DEM Modeling[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1373-1379. DOI: 10.13203/j.whugis20210100

A Weighted Radial Basis Function Interpolation Method for High Accuracy DEM Modeling

More Information
  • Received Date: September 02, 2021
  • Available Online: August 02, 2023
  • Published Date: August 04, 2023
  •   Objectives  In the process of digital elevation model (DEM) modeling, the existing interpolation methods do not take into account the local topographic characteristics near the breaklines, which makes the elevation of the local area of the breakline smoothed, thus leading to topographic distortion. A weight function with respect to considering the characteristics of breaklines is constructed, and a weight radial basis function (RBF) method is proposed. The proposed method makes full use of the gradient and direction information of the sampling points near the fracture line.
      Methods  First, the distance between the sampling point and the point to be sought is calculated adaptively by capturing the structure tensor of each sampling point, and then the distance is used to assign a suitable weight to each sampling point, finally the DEM modeling is realized by using weighted interpolation.
      Results  Examples on 10 public data and 1 private dataset of DEM construction with airborne light detection and ranging (LiDAR) point clouds indicates that the calculation results of each interpolation method gradually decrease with the decrease of sampling points. Compared to RBF and the classical interpolation methods including inverse distance weighting, ordinary Kriging and constrained triangulated irregular network, our proposed method has a better ability to maintain terriain features in the breakline area. Regardless of sample density, our proposed method is always more accurate than the other methods.
      Conclusions  Overall, the proposed method with the merit of terrain feature preservation is helpful for the construction of high-accurate DEMs, which play an important role in some geoscience applications with data quality as the most important factor.
  • [1]
    Chen C F, Yue T X, Li Y Y. A High Speed Method of SMTS[J]. Computers & Geosciences, 2012, 41: 64-71.
    [2]
    Chen C F, Fan Z M, Yue T X, et al. A Robust Estimator for the Accuracy Assessment of Remote-Sensing-Derived DEMs[J]. International Journal of Remote Sensing, 2012, 33(8): 2482-2497. doi: 10.1080/01431161.2011.615766
    [3]
    王春, 汤国安, 刘学军, 等. 特征嵌入式数字高程模型研究[J]. 武汉大学学报(信息科学版), 2009, 34(10): 1149-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200910003.htm

    Wang Chun, Tang Guoan, Liu Xuejun, et al. The Model of Terrain Features Preserved in Grid DEM[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1149-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200910003.htm
    [4]
    Li Chang. Uncertainty Modelling and Analysis of Volume Calculations Based on a Regular Grid Digital Elevation Model (DEM)[J]. Computers & Geosciences, 2018, 114: 117-129.
    [5]
    刘学军, 龚健雅. 约束数据域的Delaunay三角剖分与修改算法[J]. 测绘学报, 2001, 30(1): 82-88. doi: 10.3321/j.issn:1001-1595.2001.01.015

    Liu Xuejun, Gong Jianya. Delaunay Triangulation of Constrained Data Set[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(1): 82-88. doi: 10.3321/j.issn:1001-1595.2001.01.015
    [6]
    Liam K. Modelling Discontinuous Terrain from DSMS Using Segment Labelling, Outlier Removal and Thin-Plate Splines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155: 159-171. doi: 10.1016/j.isprsjprs.2019.07.004
    [7]
    Xia S B, Chen D, Wang R S. A Breakline-Preserving Ground Interpolation Method for MLS Data[J]. Remote Sensing Letters, 2019, 10(12): 1201-1210. doi: 10.1080/2150704X.2019.1670517
    [8]
    朱莹, 刘学军, 赵静. DEM构建中的断裂线处理[J]. 武汉大学学报(信息科学版), 2011, 36(9): 1097-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201109023.htm

    Zhu Ying, Liu Xuejun, Zhao Jing. Fault Line Management of DEM Construction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1097-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201109023.htm
    [9]
    Chen C F, Gao Y, Li Y Y. A Feature-Preserving Point Cloud Denoising Algorithm for LiDAR-Derived DEM Construction[J]. Survey Review, 2021, 53(377): 146-157. doi: 10.1080/00396265.2019.1704562
    [10]
    陈传法, 闫长青, 刘凤英, 等. 一种综合考虑采样点水平和高程误差的DEM建模算法[J]. 武汉大学学报(信息科学版), 2018, 43(5): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201805015.htm

    Chen Chuanfa, Yan Changqing, Liu Fengying. A Total Error-Bsaed Interpolation Method for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201805015.htm
    [11]
    吕海洋, 盛业华, 段平, 等. 局部最优形态参数的RBF分块地形插值方法与实验[J]. 地球信息科学学报, 2015, 17(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201503003.htm

    Lü Haiyang, Sheng Yehua, Duan Ping, et al. A Hierarchical RBF Interpolation Method Based on Local Optimal Shape Parameters[J]. Journal of Geo-Information Science, 2015, 17(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201503003.htm
    [12]
    Buhmann M D. Radial Basis Functions: Theory and Implementations[M]. Cambridge: Cambridge University Press, 2003.
    [13]
    Zhou K, Hou Q M, Wang R, et al. Real-Time KD-Tree Construction on Graphics Hardware[C]//ACM SIGGRAPH Asia, Singapore, 2008.
    [14]
    Rippa S. An Algorithm for Selecting a Good Value for the Parameter c in Radial Basis Function Interpolation[J]. Advances in Computational Mathematics, 1999, 11(2): 193-210.
    [15]
    Casciola G. Shape Preserving Surface Reconstruction Using Locally Anisotropic Radial Basis Function Interpolants[J]. Computers & Mathematics with Applications, 2006, 51(8): 1185-1198.
    [16]
    Lang T, Plagemann C, Burgard W. Adaptive Non-stationary Kernel Regression for Terrain Modeling[C]//Robotics: Science and Systems, Atlanta, GA, USA, 2007.
    [17]
    Xia S B, Wang R S. A Fast Edge Extraction Method for Mobile LiDAR Point Clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1288-1292.
    [18]
    Feng X G, Milanfar P. Multiscale Principal Components Analysis for Image Local Orientation Estimation[C]// The 36th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003.
    [19]
    Hengl T. Finding the Right Pixel Size[J]. Computers & Geosciences, 2006, 32(9): 1283-1298.
  • Cited by

    Periodical cited type(8)

    1. 李海洋,吕朋超,江岭,梁明,黄敏敏,杨灿灿,张大鹏. 面向城市雨洪模拟的地表汇流特性DEM增强表达. 地球信息科学学报. 2025(02): 491-506 .
    2. 夏袁菡子,周胜洁,邸国辉. 顾及地形断裂线的高保真DEM重建研究. 地理空间信息. 2025(02): 20-24 .
    3. 任永强,杨歌. 煤矿精细地层模型反演技术研究. 能源与环保. 2024(01): 135-140 .
    4. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    5. 苏传云,何学明,毕思存,林治忠,马喜瑞,张旭东,刘颂仁,江晓磊,崔俊. 克里金插值方法在东易煤矿9201工作面的应用. 能源研究与管理. 2024(03): 140-145 .
    6. 岳林峰,薛存金,王振国,牛超然. 基于Argo剖面浮标观测的海洋溶解氧空间-质量迭代插值方法. 地球信息科学学报. 2023(10): 2000-2011 .
    7. 殷悦,王德,罗富彬,徐丛亮,田信鹏,毕晓丽. 顾及空间各向异性的海岸带水下地形构建方法——以黄河三角洲为例. 地球科学进展. 2023(09): 978-985 .
    8. 谢文强,龙平,胡世丽. 基于空间插值算法确定离子型稀土矿体的底板. 有色金属科学与工程. 2023(05): 700-705 .

    Other cited types(6)

Catalog

    Article views (1417) PDF downloads (165) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return