Citation: | LU Haonan, YE Shirong, ZHANG Qinglan, XIA Pengfei, E Shenglong. Analysis of Temporal-Spatial Variation Characteristics of Ionosphere over China Region in the Past 15 Years Using COSMIC-1/2 IonPrf Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 765-774. DOI: 10.13203/j.whugis20210041 |
Using IonPrf of COSMIC (constellation observation system for meteorology ionosphere and climate) measurements during 2006—2020, the temporal-spatial variation characteristics of ionosphere is analyzed over China region.
First, the quality of new generation COSMIC-2 data is introduced over China and global regions. Then, the method of extracting the ionospheric characteristic parameters and controlling the quality of IonPrf products data is illustrated. Finally, the temporal-spatial variation characteristic of ionospheric parameters is analyzed over China region for 15 years during a complete solar cycle by different time scale.
Experimental results show that the ionospheric variation of China region has the characteristic of annual, seasonal, and diurnal variation related to solar activity. In annual variation, NmF2, HmF2 and total electron content(TEC) in southern China being generally higher than those in northern China, has obvious spatial distribution characteristic. In seasonal variation, NmF2 and TEC have maximum in March and October, and minimum in June and July.
The winter anomaly only appears in parts of southern China and the average of HmF2 in spring and autumn is higher than one in summer and winter. In diurnal variation, NmF2 and TEC have maximum during local time 12:00-16:00 and the local time corresponding to the peak value moves forward with increasing of latitude. The NmF2 and TEC are still high relatively after sunset during year of solar high activity. HmF2 of southern China has maximum during local time 12:00-16:00 and minimum during local time 05:00—07:00. And HmF2 of northern China in daytime is generally lower than one in night.
[1] |
Brunini C, Azpilicueta F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Different Geomagnetic Regions and Ionospheric Conditions[J]. Journal of Geodesy, 2010, 84(5): 293-304.
|
[2] |
Yue X N, Schreiner W S, Lin Y C, et al. Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A3): A03317.
|
[3] |
Luo X M, Xiong C, Gu S F, et al. Geomagnetically Conjugate Observations of Equatorial Plasma Irregularities from Swarm Constellation and Ground-Based GPS Stations[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3650-3665.
|
[4] |
黄玲, 章红平, 徐培亮, 等. 中国区域VTEC模型Kriging算法研究[J]. 武汉大学学报(信息科学版), 2016, 41(6):729-737.
Huang Ling, Zhang Hongping, Xu Peiliang, et al. VTEC Modeling with Kriging Algorithm over China Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):729-737.
|
[5] |
Zhang B C, Teunissen P J G, Yuan Y B, et al. Joint Estimation of Vertical Total Electron Content (VTEC) and Satellite Differential Code Biases (SDCBS) Using Low-Cost Receivers[J]. Journal of Geodesy, 2018, 92(4): 401-413.
|
[6] |
余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4):943-949.
Yu Tao, Wan Weixing, Liu Libo, et al. Using IGS Data to Analysis the Global TEC Annual and Semiannual Variation[J]. Chinese Journal of Geophysics, 2006, 49(4):943-949.
|
[7] |
韩吉德, 王祖顺, 王春青. 全球电离层时空变化特性分析[J]. 测绘地理信息, 2012, 37(6): 26-29.
Han Jide, Wang Zushun, Wang Chunqing. Analysis of Temporal and Spatial Change in Global Ionosphere[J]. Journal of Geomatics, 2012, 37(6): 26-29.
|
[8] |
李涌涛, 李建文, 魏绒绒, 等. 全球电离层TEC格网时空变化特性分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 776-783.
Li Yongtao, Li Jianwen, Wei Rongrong, et al. Analysis of Temporal and Spatial Variation Characteristics of Global Ionospheric TEC Grid[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 776-783.
|
[9] |
Lei J H, Syndergaard S, Burns A G, et al. Comparison of COSMIC Ionospheric Measurements with Ground-based Observations and Model Predictions: Preliminary Results[J]. Journal of Geophysical Research: Space Physics, 2007, DOI:10.1029/2006JA012240. doi: 10.1029/2006JA012240
|
[10] |
Pedatella N M, Forbes J M, Maute A, et al. Longitudinal Variations in the F
|
[11] |
Tulasi Ram S, Su S Y, Liu C H. FORMOSAT-3/COSMIC Observations of Seasonal and Longitudinal Variations of Equatorial Ionization Anomaly and Its Interhemispheric Asymmetry During the Solar Minimum Period[J]. Journal of Geophysical Research: Space Physics, 2009,114(A6):272-276.
|
[12] |
Mungufeni P,Rabiu B A,Okoh D,et al . Characterisation of Total Electron Content over African Region Using Radio Occultation Observations of COSMIC Satellites[J]. Advances in Space Research, 2020, 65(1): 19-29.
|
[13] |
Moses M, Panda S K, Sharma S K, et al. Ionospheric Electron Density Characteristics over Africa from FORMOSAT-3/COSMIC Radio Occultation[J].Astrophysics and Space Science, 2020, 365(7): 1-13.
|
[14] |
赵玲, 周杨, 薛武. GIM和IRI2012模式在中国地区的时空变化和扰动分析[J]. 地球物理学进展, 2016, 31(5): 2048-2055.
Zhao Ling, Zhou Yang, Xue Wu. Temporal and Spatial Variation and Perturbation Analysis for China with GIM and IRI2012 Model[J]. Progress in Geophysics, 2016, 31(5): 2048-2055.
|
[15] |
吴风波, 吴仁攀, 任晓东. 综合多种方法分析中国区域TEC时空变化特征[J]. 大地测量与地球动力学, 2014, 34(5): 75-81.
Wu Fengbo, Wu Renpan, Ren Xiaodong. Analysis of Temporal-Spatial Variations of TEC in China with Several Methods[J]. Journal of Geodesy and Geodynamics, 2014, 34(5): 75-81.
|
[16] |
Hu L, Ning B, Liu L, et al. Validation of COSMIC Ionospheric Peak Parameters by the Measurements of an Ionosonde Chain in China[J]. Annales Geophysicae, 2014, 32(10): 1311-1319.
|
[17] |
孙方方, 罗佳, 徐晓华, 等. 中国区域掩星观测与IRI-2016电离层峰值参数的比较[J]. 武汉大学学报(信息科学版), 2020, 45(3): 403-410.
Sun Fangfang, Luo Jia, Xu Xiaohua, et al. Comparisons of Ionospheric Peak Parameters from Radio Occultation Observations and IRI-2016 Model Outputs over China[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 403-410.
|
[18] |
Schreiner W S, Weiss J P, Anthes R A, et al. COSMIC-2 Radio Occultation Constellation: First Results[J]. Geophysical Research Letters, 2020, 47(4):563-572.
|
[19] |
Hsu C T, Matsuo T, Liu J Y. Impact of Assimilating the FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2 RO Data on the Midlatitude and Low-Latitude Ionospheric Specification[J]. Earth and Space Science, 2018, 5(12): 875-890.
|
[20] |
Yang K F, Chu Y H, Su C L, et al. An Examination of FORMOSAT-3/COSMIC Ionospheric Electron Density Profile: Data Quality Criteria and Comparisons with the IRI Model[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20(1): 193.
|
[21] |
Shubin V N. Global Median Model of the F2-layer Peak Height Based on Ionospheric Radio-occultation and Ground-based Digisonde Observations[J]. Advances in Space Research, 2015, 56(5): 916-928.
|
[22] |
Velinov P I Y, Asenovski S, Kudela K, et al. Impact of COSMIC Rays and Solar Energetic Particles on the Earth’s Ionosphere and Atmosphere[J]. Journal of Space Weather and Space Climate, 2013, 3: A14.
|
[23] |
Liu L B, Le H J, Chen Y D, et al. Features of the Middle- and Low-Latitude Ionosphere During Solar Minimum as Revealed from COSMIC Radio Occultation Measurements[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A9): A09307.
|
[24] |
Fejer B G, Scherliess L. On the Variability of Equatorial F-Region Vertical Plasma Drifts[J]. Journal of Atmospheric and Solar⁃Terrestrial Physics, 2001, 63(9): 893-897.
|
[25] |
Gowtam V S, Ram S T. Ionospheric Winter Anomaly and Annual Anomaly Observed from Formosat-3/COSMIC Radio Occultation Observations During the Ascending Phase of Solar Cycle 24[J]. Advances in Space Research, 2017, 60(8): 1585-1593.
|
[26] |
Huang Z, Yuan H. Climatology of the Ionospheric Slab Thickness Along the Longitude of 120°E in China and Its Adjacent Region During the Solar Minimum Years of 2007—2009[J]. Annales Geophysicae, 2015, 33(10): 1311-1319.
|
[1] | LIU Lin, MA Zepeng, SUN Yi, LI Wanwu, XIANG Zicheng. Semantic Segmentation of Street View and Multi-dimensional Feature Identification of City Based on MS-DeepLabV3+[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 343-354. DOI: 10.13203/j.whugis20220773 |
[2] | WU Jie, CHENG Liang, CHU Sensen, RUAN Xiaoguang. Sky View Index-Urban Transportation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 706-717. DOI: 10.13203/j.whugis20200447 |
[3] | XU Hong, WANG Lubin, FANG Zhixiang, HE Minghui, HOU Xuecheng, ZUO Liang, GUAN Fangli, XIONG Ce, GONG Yiyu, PANG Qinglin, ZHANG Han, SUN Shuteng, NADIRE Aimaier. Street-Facing Architectural Image Mapping and Architectural Style Map Generation Method Using Street View Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 659-671. DOI: 10.13203/j.whugis20200445 |
[4] | CHEN Shanxue, ZHENG Wenjing, ZHANG Jiajia, LI Fangwei. Fast Compression Algorithm for Hyperspectral Image Based on Dispersion Sorting in Transform Domain[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 868-874. DOI: 10.13203/j.whugis20140270 |
[5] | ZHENG Zhaobao, ZHENG Hong. Fuzzy Image Classification with a Certain Degree[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 482-486. DOI: 10.13203/j.whugis20150712 |
[6] | ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736 |
[7] | Ma Xudong, Yan Li, Cao Wei, Li Wuqi, Wang Yu. A New Image Quality Assessment Model Based onthe Gradient Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1412-1418. |
[8] | he peipei, wan youchuan, gao xianjun, qin jiaxin. street view images matching al gorithm based on colorscale-invariant feature transform[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 867-872. |
[9] | ZHENG Zhaobao, PAN Li, ZHENG Hong. Image Segmentation Based on Fuzzy Logic Methods[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 397-400. DOI: 10.13203/j.whugis20120209 |
[10] | MA Hongchao, LI Deren. A New Approach for Image Similarity Definition and Its Application to Image Retrieval[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 405-411. |