WANG Xun, CUI Xianqiang, GAO Tianhang. Adaptive Filtering Algorithms of Dynamic Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 741-748. DOI: 10.13203/j.whugis20200635
Citation: WANG Xun, CUI Xianqiang, GAO Tianhang. Adaptive Filtering Algorithms of Dynamic Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 741-748. DOI: 10.13203/j.whugis20200635

Adaptive Filtering Algorithms of Dynamic Model

More Information
  • Received Date: March 20, 2021
  • Available Online: May 23, 2023
  • Published Date: May 04, 2023
  •   Objectives  Kalman filter is frequently used in global navigation satellite system kinematic positioning applications. However, due to the irregularity of carriers' movement, the dynamic model is often deviated and the positioning accuracy is decreased.
      Methods  To solve this problem, two adaptive filtering algorithms are proposed to weaken the effects of dynamic model bias based on the estimated turning rate of coordinated turn (CT) model. One is the filtering algorithm that combines CT model with an improved ellipsoid constraint equation. The other is a 3D turning model for real-time estimation of the turning rate through the analysis of the carriers' movement. An adaptive filtering algorithm that combines 3D turning model and the adaptive factor constructed by the innovation vector is proposed.
      Results  The experimental results illustrate that the two algorithms can control the influence of the dynamic model errors well under different maneuvering conditions, and their accuracy is significantly better than that of standard Kalman filter and the filtering algorithm combining CT model with constant velocity model.
      Conclusions  In particular, the second algorithm not only improves the accuracy of dynamic model by adaptive estimation, but also further controls the disturbance influence of dynamic model by adaptive factor, which significantly enhances the accuracy and reliability of the navigation solutions.
  • [1]
    杨元喜. 自适应动态导航定位[M]. 北京: 测绘出版社, 2017.

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing: Surveying and Mapping Press, 2017.
    [2]
    杨元喜, 曾安敏, 景一帆. 函数模型和随机模型双约束的GNSS数据融合及其性质[J]. 武汉大学学报(信息科学版), 2014, 39(2): 127-131. doi: 10.13203/j.whugis20130378

    Yang Yuanxi, Zeng Anmin, Jing Yifan. GNSS Data Fusion with Functional and Stochastic Model Constraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. doi: 10.13203/j.whugis20130378
    [3]
    归庆明, 韩松辉. Kalman滤波模型误差的修复[J]. 武汉大学学报(信息科学版), 2010, 35(8): 983-987. http://ch.whu.edu.cn/article/id/1034

    Gui Qingming, Han Songhui. Adaptation of Model Errors in Kalman Filtering[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 983-987. http://ch.whu.edu.cn/article/id/1034
    [4]
    Liu Z X, Wu D H, Xie W X, et al. Tracking the Turn Maneuvering Target Using the Multi-target Bayes Filter with an Adaptive Estimation of Turn Rate[J]. Sensors (Basel, Switzerland), 2017, 17(2): 373. doi: 10.3390/s17020373
    [5]
    Jilkov V P, Angelova D S, Semerdjiev T A. Design and Comparison of Mode-Set Adaptive IMM Algorithms for Maneuvering Target Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 343-350. doi: 10.1109/7.745704
    [6]
    Cai X B, Sun F M. Two-Layer IMM Tracker with Variable Structure for Curvilinear Maneuvering Targets[J]. Wireless Personal Communications, 2018, 103(1): 727-740. doi: 10.1007/s11277-018-5473-3
    [7]
    Masoumi-Ganjgah F, Fatemi-Mofrad R, Ghadimi N. Target Tracking with Fast Adaptive Revisit Time Based on Steady State IMM Filter[J]. Digital Signal Processing, 2017, 69: 154-161. doi: 10.1016/j.dsp.2017.06.007
    [8]
    Lee L Y, Chen Y W. IMM Estimator Based on Fuzzy Weighted Input Estimation for Tracking a Maneuvering Target[J]. Applied Mathematical Modelling, 2015, 39(19): 5791-5802. doi: 10.1016/j.apm.2015.02.031
    [9]
    Mu M X, Zhao L. A GNSS/INS-Integrated System for an Arbitrarily Mounted Land Vehicle Navigation Device[J]. GPS Solutions, 2019, 23(4): 112. doi: 10.1007/s10291-019-0901-8
    [10]
    李团, 章红平, 牛小骥, 等. RTK/INS紧组合算法在卫星数不足情况下的性能分析[J]. 武汉大学学报(信息科学版), 2018, 43(3): 478-484. doi: 10.13203/j.whugis20150305

    Li Tuan, Zhang Hongping, Niu Xiaoji, et al. Performance Analysis of Tightly Coupled RTK/INS Algorithm in Case of Insufficient Number of Satellites[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 478-484. doi: 10.13203/j.whugis20150305
    [11]
    李彦杰, 杨元喜, 何海波. 附加约束条件对GNSS/INS组合导航结果的影响分析[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1249-1255. doi: 10.13203/j.whugis20150526

    Li Yanjie, Yang Yuanxi, He Haibo. Effects Analysis of Constraints on GNSS/INS Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1249-1255. doi: 10.13203/j.whugis20150526
    [12]
    高为广, 陈谷仓. 结合自适应滤波和神经网络的GNSS/INS抗差组合导航算法[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1323-1328. http://ch.whu.edu.cn/article/id/3118

    Gao Weiguang, Chen Gucang. Integrated GNSS/INS Navigation Algorithms Combining Adaptive Filter with Neural Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1323-1328. http://ch.whu.edu.cn/article/id/3118
    [13]
    张小红, 潘宇明, 左翔, 等. 一种改进的抗差Kalman滤波方法在精密单点定位中的应用[J]. 武汉大学学报(信息科学版), 2015, 40(7): 858-864. doi: 10.13203/j.whugis20130577

    Zhang Xiaohong, Pan Yuming, Zuo Xiang, et al. An Improved Robust Kalman Filtering and Its Application in PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 858-864. doi: 10.13203/j.whugis20130577
    [14]
    王振杰, 刘慧敏, 单瑞, 等. 顾及系统噪声和观测噪声的分级自适应信息滤波算法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 88-95. doi: 10.13203/j.whugis20190248

    Wang Zhenjie, Liu Huimin, Shan Rui, et al. Hierarchical Adaptive Information Filtering Algorithm for System Noise and Observation Noise[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 88-95. doi: 10.13203/j.whugis20190248
    [15]
    戴卿, 隋立芬, 田源, 等. 变分优化的高斯混合滤波及其在导航中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(5): 699-705. doi: 10.13203/j.whugis20170235

    Dai Qing, Sui Lifen, Tian Yuan, et al. Gaussian Mixture Filter Based on Variational Bayesian Learning Optimization and Its Application to Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 699-705. doi: 10.13203/j.whugis20170235
    [16]
    Zhang C, Zhao X B, Pang C L, et al. Improved Fault Detection Method Based on Robust Estimation and Sliding Window Test for INS/GNSS Integration[J]. Journal of Navigation, 2020, 73(4): 776-796.
    [17]
    崔先强, 杨元喜, 高为广. 多种有色噪声自适应滤波算法的比较[J]. 武汉大学学报(信息科学版), 2006, 31(8): 731-735. http://ch.whu.edu.cn/article/id/2533

    Cui Xianqiang, Yang Yuanxi, Gao Weiguang. Comparison of Adaptive Filter Arithmetics in Controlling Influence of Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 731-735. http://ch.whu.edu.cn/article/id/2533
    [18]
    崔先强, 杨元喜. 分类因子自适应抗差滤波[J]. 自然科学进展, 2006, 16(4): 490-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200604020.htm

    Cui Xianqiang, Yang Yuanxi. Classification Factor Adaptive Robust Filtering[J]. Progress in Natural Science, 2006, 16(4): 490-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200604020.htm
    [19]
    吴富梅, 杨元喜, 崔先强. 利用部分状态不符值构造的自适应因子在GPS/INS紧组合导航中的应用[J]. 武汉大学学报(信息科学版), 2010, 35(2): 156-159. http://ch.whu.edu.cn/article/id/839

    Wu Fumei, Yang Yuanxi, Cui Xianqiang. Application of Adaptive Factor Based on Partial State Discrepancy in Tight Coupled GPS/INS Integration[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 156-159. http://ch.whu.edu.cn/article/id/839
    [20]
    Yang Y X, Zhang X D, Xu J Y. Adaptively Constrained Kalman Filtering for Navigation Applications[J]. Survey Review, 2011, 43(322): 370-381.
    [21]
    Yang Y X, Cui X Q. Adaptively Robust Filter with Multi Adaptive Factors[J]. Survey Review, 2008, 40(309): 260-270.
    [22]
    崔先强, 杨元喜, 许国昌. 将GPS广播星历算法作为低轨卫星动力学模型的综合定轨方法[J]. 武汉大学学报(信息科学版), 2011, 36(12): 1478-1481. http://ch.whu.edu.cn/article/id/734

    Cui Xianqiang, Yang Yuanxi, Xu Guochang. A Synthetic Approach for Orbit Determination Considering GPS Broadcast Ephemeris Algorithm as Dnamic Model of LEO[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1478-1481. http://ch.whu.edu.cn/article/id/734
    [23]
    方欣颀, 范磊. BDS-2/BDS-3伪距单点定位精度分析[J]. 全球定位系统, 2020, 45(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202001004.htm

    Fang Xinqi, Fan Lei. Accuracy Analysis of BDS-2/BDS-3 Standard Point Positioning[J]. GNSS World of China, 2020, 45(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202001004.htm
    [24]
    刘成, 杜晓辉, 王萌. 附有高程约束的中国区域定位系统定位精度分析[J]. 全球定位系统, 2011, 36(1): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201101006.htm

    Liu Cheng, Du Xiaohui, Wang Meng. Positioning Accuracy of CAPS Subject to Earth Height Constraint[J]. GNSS World of China, 2011, 36(1): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201101006.htm
    [25]
    丁超, 楼立志. 高程约束法在GPS导航中的应用[J]. 测绘信息与工程, 2012, 37(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201204003.htm

    Ding Chao, Lou Lizhi. Application of Height Constraint Method in GPS Navigation System[J]. Journal of Geomatics, 2012, 37(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201204003.htm
    [26]
    Yang Y X, Gao W G. A New Learning Statistic for Adaptive Filter Based on Predicted Residuals[J]. Progress in Natural Science, 2006, 16(8): 833-837.
  • Related Articles

    [1]GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223
    [2]GONG Xuewen, WANG Fuhong. Autonomous Orbit Determination of HY2A and ZY3 Missions Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 309-313. DOI: 10.13203/j.whugis20140892
    [3]ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730
    [4]MA Yang, OU Jikun, YUAN Yunbin, HUO Xingliang, DING Wenwu. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900. DOI: 10.13203/j.whugis20130626
    [5]QIN Jian, GUO Jinyun, KONG Qiaoli, LI Guowei. Precise Orbit Determination of Jason-2with Precision of CentimetersBased on Satellite-borne GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141. DOI: 10.13203/j.whugis20120686
    [6]WANG Fuhong, XU Qichao, GONG Xuewen, ZHANG Wei. Application of a Gravity Acceleration Approximation Function in the PreciseReal-Time Orbit Determination Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 47-51.
    [7]LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211.
    [8]GUO Jing, ZHAO Qile, LI Min, HU Zhigang. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55.
    [9]WANG Fuhong. A Kalman Filtering Algorithm for Precision Real-Time Orbit Determination with Space-Borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 653-656.
    [10]GENG Jianghui, SHI Chuang, ZHAO Qile, LIU Jingnan. GPS Precision Orbit Determination from Combined Ground and Space-borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 906-909.
  • Cited by

    Periodical cited type(1)

    1. 高贤君,冉树浩,张广斌,杨元维. 基于多特征融合与对象边界联合约束网络的建筑物提取. 武汉大学学报(信息科学版). 2024(03): 355-365 .

    Other cited types(0)

Catalog

    Article views (336) PDF downloads (79) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return