LUO Huiyuan, JIANG Ya’nan, XU Qiang, TANG Bin. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709. DOI: 10.13203/j.whugis20200610
Citation: LUO Huiyuan, JIANG Ya’nan, XU Qiang, TANG Bin. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709. DOI: 10.13203/j.whugis20200610

Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model

More Information
  • Received Date: October 25, 2021
  • Available Online: May 23, 2023
  • Published Date: May 04, 2023
  •   Objectives  The inadequate utilization of multisource monitoring data and the unstable results of displacement prediction are often caused by inaccurate extraction of random components, uncertain optimal training data set and timeliness in the comprehensive landslide displacement prediction study.
      Methods  On that account, a new landslide prediction model is proposed by integrating the variational mode decomposition with the gated recurrent unit recurrent neural network on the basis of landslide displacement time series analysis.
      Results  Taking Baishuihe landslide in the Three Gorges Reservoir Area as an example, the monitoring data including displacement and reservoir water level and rainfall data from July 2003 to December 2012 are selected for analysis and research. The root mean square error of the predicted value of the model is 9.715 mm and the coefficient of determination is 0.967. The results show that the model guarantees high prediction accuracy and has obvious advantages in effectiveness and timeliness as well.
      Conclusion  Therefore, it has a strong application and popularization value in reservoir bank landslide displacement prediction research.
  • [1]
    杜娟, 殷坤龙, 柴波. 基于诱发因素响应分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm

    Du Juan, Yin Kunlong, Chai Bo. Study of Displacement Prediction Model of Landslide Based on Response Analysis of Inducing Factors[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm
    [2]
    李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm

    Li Linwei, Wu Yiping, Miao Fasheng. Prediction of Non-equidistant Landslide Displacement Time Series Based on Grey Wolf Support Vector Machine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm
    [3]
    冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218

    Feng Feifan, Wu Xueling, Niu Ruiqing, et al. A Landslide Deformation Analysis Method Using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218
    [4]
    李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm

    Li Linwei, Wu Yiping, Miao Fasheng, et al. Displacement Prediction of Landslides Based on Variational Mode Decomposition and GWO-MIC-SVR Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm
    [5]
    Xu S L, Niu R Q. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China[J]. Computers & Geosciences, 2018, 111: 87-96.
    [6]
    Lian C, Zeng Z G, Yao W, et al. Extreme Learning Machine for the Displacement Prediction of Landslide Under Rainfall and Reservoir Level[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(8): 1957-1972. doi: 10.1007/s00477-014-0875-6
    [7]
    Ren F, Wu X L, Zhang K X, et al. Application of Wavelet Analysis and a Particle Swarm-Optimized Support Vector Machine to Predict the Displacement of the Shuping Landslide in the Three Gorges, China[J]. Environmental Earth Sciences, 2015, 73(8): 4791-4804. doi: 10.1007/s12665-014-3764-x
    [8]
    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [9]
    罗亦泳, 姚宜斌, 黄城, 等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286

    Luo Yiyong, Yao Yibin, Huang Cheng, et al. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286
    [10]
    蒋永华, 汤宝平, 刘文艺, 等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm

    Jiang Yonghua, Tang Baoping, Liu Wenyi, et al. Feature Extraction Method Based on Parameter Optimized Morlet Wavelet Transform[J]. Chinese Journal of Scientific Instrument, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm
    [11]
    Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
    [12]
    Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. [2020-10-12]. https://arxiv.org/abs/1412.3555.
    [13]
    Gao S, Huang Y F, Zhang S, et al. Short-Term Runoff Prediction with GRU and LSTM Networks Without Requiring Time Step Optimization During Sample Generation[J]. Journal of Hydrology, 2020, 589: 125188.
    [14]
    Lian C, Zeng Z G, Yao W, et al. Multiple Neural Networks Switched Prediction for Landslide Displacement[J]. Engineering Geology, 2015, 186: 91-99.
    [15]
    Zhu X, Xu Q, Tang M G, et al. A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides[J]. Neural Computing and Applications, 2018, 30(12): 3825-3835.
    [16]
    徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm

    Xu Feng, Fan Chunju, Xu Xunjian, et al. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
    [17]
    Huang F M, Yin K L, Zhang G R, et al. Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376.
    [18]
    黄发明, 殷坤龙, 杨背背, 等. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测[J]. 地球科学, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm

    Huang Faming, Yin Kunlong, Yang Beibei, et al. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model[J]. Earth Science, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return