Citation: | LUO Huiyuan, JIANG Ya’nan, XU Qiang, TANG Bin. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709. DOI: 10.13203/j.whugis20200610 |
[1] |
杜娟, 殷坤龙, 柴波. 基于诱发因素响应分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm
Du Juan, Yin Kunlong, Chai Bo. Study of Displacement Prediction Model of Landslide Based on Response Analysis of Inducing Factors[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm
|
[2] |
李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm
Li Linwei, Wu Yiping, Miao Fasheng. Prediction of Non-equidistant Landslide Displacement Time Series Based on Grey Wolf Support Vector Machine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm
|
[3] |
冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218
Feng Feifan, Wu Xueling, Niu Ruiqing, et al. A Landslide Deformation Analysis Method Using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218
|
[4] |
李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm
Li Linwei, Wu Yiping, Miao Fasheng, et al. Displacement Prediction of Landslides Based on Variational Mode Decomposition and GWO-MIC-SVR Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm
|
[5] |
Xu S L, Niu R Q. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China[J]. Computers & Geosciences, 2018, 111: 87-96.
|
[6] |
Lian C, Zeng Z G, Yao W, et al. Extreme Learning Machine for the Displacement Prediction of Landslide Under Rainfall and Reservoir Level[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(8): 1957-1972. doi: 10.1007/s00477-014-0875-6
|
[7] |
Ren F, Wu X L, Zhang K X, et al. Application of Wavelet Analysis and a Particle Swarm-Optimized Support Vector Machine to Predict the Displacement of the Shuping Landslide in the Three Gorges, China[J]. Environmental Earth Sciences, 2015, 73(8): 4791-4804. doi: 10.1007/s12665-014-3764-x
|
[8] |
Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
|
[9] |
罗亦泳, 姚宜斌, 黄城, 等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286
Luo Yiyong, Yao Yibin, Huang Cheng, et al. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286
|
[10] |
蒋永华, 汤宝平, 刘文艺, 等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm
Jiang Yonghua, Tang Baoping, Liu Wenyi, et al. Feature Extraction Method Based on Parameter Optimized Morlet Wavelet Transform[J]. Chinese Journal of Scientific Instrument, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm
|
[11] |
Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
|
[12] |
Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. [2020-10-12]. https://arxiv.org/abs/1412.3555.
|
[13] |
Gao S, Huang Y F, Zhang S, et al. Short-Term Runoff Prediction with GRU and LSTM Networks Without Requiring Time Step Optimization During Sample Generation[J]. Journal of Hydrology, 2020, 589: 125188.
|
[14] |
Lian C, Zeng Z G, Yao W, et al. Multiple Neural Networks Switched Prediction for Landslide Displacement[J]. Engineering Geology, 2015, 186: 91-99.
|
[15] |
Zhu X, Xu Q, Tang M G, et al. A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides[J]. Neural Computing and Applications, 2018, 30(12): 3825-3835.
|
[16] |
徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
Xu Feng, Fan Chunju, Xu Xunjian, et al. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
|
[17] |
Huang F M, Yin K L, Zhang G R, et al. Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376.
|
[18] |
黄发明, 殷坤龙, 杨背背, 等. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测[J]. 地球科学, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm
Huang Faming, Yin Kunlong, Yang Beibei, et al. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model[J]. Earth Science, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm
|
[1] | GONG Xunqiang, QIU Wanjin, LÜ Kaiyun, ZHANG Tong, ZHANG Rui, LUO Sheng. A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2329-2341. DOI: 10.13203/j.whugis20230249 |
[2] | LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363 |
[3] | HU Qiushi, LI Rui, WU Huayi, LIU Zhaohui, CAI Jing. Population Analysis Unit Expression Considering Urban Scene Changes[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1788-1799. DOI: 10.13203/j.whugis20220579 |
[4] | JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658 |
[5] | ZHANG Sihui, WU Yunlong, ZHANG Yi, YANG Yu. A Gross Error Detection Method of Satellite Gravity Data Based on Joint Variational Autoencoder[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 986-995. DOI: 10.13203/j.whugis20230226 |
[6] | CHEN Xiang, YANG Zhiqiang, TIAN Zhen, YANG Bing, LIANG Pei. Denoising Method for GNSS Time Series Based on GA‑VMD and Multi‐scale Permutation Entropy[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1425-1434. DOI: 10.13203/j.whugis20210215 |
[7] | LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703 |
[8] | LIU Xu, WANG Jian, LI Wen. A Time-Frequency Extraction Model of Structural Vibration Combining VMD and HHT[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1686-1692. DOI: 10.13203/j.whugis20200646 |
[9] | LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 784-790. DOI: 10.13203/j.whugis20180437 |
[10] | LUO Yiyong, YAO Yibin, HUANG Cheng, ZHANG Jingying. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619. DOI: 10.13203/j.whugis20180286 |