LUO Huiyuan, JIANG Ya’nan, XU Qiang, TANG Bin. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709. DOI: 10.13203/j.whugis20200610
Citation: LUO Huiyuan, JIANG Ya’nan, XU Qiang, TANG Bin. Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 702-709. DOI: 10.13203/j.whugis20200610

Displacement Prediction of Reservoir Bank Landslide Based on Optimal Decomposition Mode and GRU Model

More Information
  • Received Date: October 25, 2021
  • Available Online: May 23, 2023
  • Published Date: May 04, 2023
  •   Objectives  The inadequate utilization of multisource monitoring data and the unstable results of displacement prediction are often caused by inaccurate extraction of random components, uncertain optimal training data set and timeliness in the comprehensive landslide displacement prediction study.
      Methods  On that account, a new landslide prediction model is proposed by integrating the variational mode decomposition with the gated recurrent unit recurrent neural network on the basis of landslide displacement time series analysis.
      Results  Taking Baishuihe landslide in the Three Gorges Reservoir Area as an example, the monitoring data including displacement and reservoir water level and rainfall data from July 2003 to December 2012 are selected for analysis and research. The root mean square error of the predicted value of the model is 9.715 mm and the coefficient of determination is 0.967. The results show that the model guarantees high prediction accuracy and has obvious advantages in effectiveness and timeliness as well.
      Conclusion  Therefore, it has a strong application and popularization value in reservoir bank landslide displacement prediction research.
  • [1]
    杜娟, 殷坤龙, 柴波. 基于诱发因素响应分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm

    Du Juan, Yin Kunlong, Chai Bo. Study of Displacement Prediction Model of Landslide Based on Response Analysis of Inducing Factors[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1783-1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909008.htm
    [2]
    李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm

    Li Linwei, Wu Yiping, Miao Fasheng. Prediction of Non-equidistant Landslide Displacement Time Series Based on Grey Wolf Support Vector Machine[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1998-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201810020.htm
    [3]
    冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218

    Feng Feifan, Wu Xueling, Niu Ruiqing, et al. A Landslide Deformation Analysis Method Using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. doi: 10.13203/j.whugis20170218
    [4]
    李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm

    Li Linwei, Wu Yiping, Miao Fasheng, et al. Displacement Prediction of Landslides Based on Variational Mode Decomposition and GWO-MIC-SVR Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm
    [5]
    Xu S L, Niu R Q. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China[J]. Computers & Geosciences, 2018, 111: 87-96.
    [6]
    Lian C, Zeng Z G, Yao W, et al. Extreme Learning Machine for the Displacement Prediction of Landslide Under Rainfall and Reservoir Level[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(8): 1957-1972. doi: 10.1007/s00477-014-0875-6
    [7]
    Ren F, Wu X L, Zhang K X, et al. Application of Wavelet Analysis and a Particle Swarm-Optimized Support Vector Machine to Predict the Displacement of the Shuping Landslide in the Three Gorges, China[J]. Environmental Earth Sciences, 2015, 73(8): 4791-4804. doi: 10.1007/s12665-014-3764-x
    [8]
    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [9]
    罗亦泳, 姚宜斌, 黄城, 等. 基于改进VMD的变形特征提取与分析[J]. 武汉大学学报(信息科学版), 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286

    Luo Yiyong, Yao Yibin, Huang Cheng, et al. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619. doi: 10.13203/j.whugis20180286
    [10]
    蒋永华, 汤宝平, 刘文艺, 等. 基于参数优化Morlet小波变换的故障特征提取方法[J]. 仪器仪表学报, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm

    Jiang Yonghua, Tang Baoping, Liu Wenyi, et al. Feature Extraction Method Based on Parameter Optimized Morlet Wavelet Transform[J]. Chinese Journal of Scientific Instrument, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201001011.htm
    [11]
    Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
    [12]
    Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. [2020-10-12]. https://arxiv.org/abs/1412.3555.
    [13]
    Gao S, Huang Y F, Zhang S, et al. Short-Term Runoff Prediction with GRU and LSTM Networks Without Requiring Time Step Optimization During Sample Generation[J]. Journal of Hydrology, 2020, 589: 125188.
    [14]
    Lian C, Zeng Z G, Yao W, et al. Multiple Neural Networks Switched Prediction for Landslide Displacement[J]. Engineering Geology, 2015, 186: 91-99.
    [15]
    Zhu X, Xu Q, Tang M G, et al. A Hybrid Machine Learning and Computing Model for Forecasting Displacement of Multifactor-Induced Landslides[J]. Neural Computing and Applications, 2018, 30(12): 3825-3835.
    [16]
    徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm

    Xu Feng, Fan Chunju, Xu Xunjian, et al. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
    [17]
    Huang F M, Yin K L, Zhang G R, et al. Landslide Displacement Prediction Using Discrete Wavelet Transform and Extreme Learning Machine Based on Chaos Theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376.
    [18]
    黄发明, 殷坤龙, 杨背背, 等. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测[J]. 地球科学, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm

    Huang Faming, Yin Kunlong, Yang Beibei, et al. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model[J]. Earth Science, 2018, 43(3): 887-898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803020.htm
  • Related Articles

    [1]GONG Xunqiang, QIU Wanjin, LÜ Kaiyun, ZHANG Tong, ZHANG Rui, LUO Sheng. A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2329-2341. DOI: 10.13203/j.whugis20230249
    [2]LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363
    [3]HU Qiushi, LI Rui, WU Huayi, LIU Zhaohui, CAI Jing. Population Analysis Unit Expression Considering Urban Scene Changes[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1788-1799. DOI: 10.13203/j.whugis20220579
    [4]JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658
    [5]ZHANG Sihui, WU Yunlong, ZHANG Yi, YANG Yu. A Gross Error Detection Method of Satellite Gravity Data Based on Joint Variational Autoencoder[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 986-995. DOI: 10.13203/j.whugis20230226
    [6]CHEN Xiang, YANG Zhiqiang, TIAN Zhen, YANG Bing, LIANG Pei. Denoising Method for GNSS Time Series Based on GA‑VMD and Multi‐scale Permutation Entropy[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1425-1434. DOI: 10.13203/j.whugis20210215
    [7]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [8]LIU Xu, WANG Jian, LI Wen. A Time-Frequency Extraction Model of Structural Vibration Combining VMD and HHT[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1686-1692. DOI: 10.13203/j.whugis20200646
    [9]LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 784-790. DOI: 10.13203/j.whugis20180437
    [10]LUO Yiyong, YAO Yibin, HUANG Cheng, ZHANG Jingying. Deformation Feature Extraction and Analysis Based on Improved Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 612-619. DOI: 10.13203/j.whugis20180286
  • Cited by

    Periodical cited type(14)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 .
    3. 罗超雷,徐哈宁,肖慧,范凌峰,胡佳超,游丝露. 基于鲸鱼优化混合神经网络的滑坡位移预测. 科学技术与工程. 2024(16): 6610-6616 .
    4. 杜岩,宁利泽,谢谟文,白云飞,李恒,贾北凝. 考虑时间滞后效应的库岸滑坡位移预测. 武汉大学学报(信息科学版). 2024(08): 1347-1355 .
    5. 高莎,尹业梦. 湖北十堰某降雨诱发滑坡的变形特征分析及防治措施. 城市地质. 2024(03): 376-382 .
    6. 张雪,杨成生,丁慧兰,胡涛,李祖锋. 基于时序InSAR的GRU-ARIMA云南昭通吉那古滑坡位移预测. 大地测量与地球动力学. 2024(10): 1028-1033 .
    7. 李瑞晨,侯木舟,孔梦麟,谢昊含. 基于VMD-SegSigmoid-XGBoost-ClusterLSTM算法的山体滑坡表面位移预测. 科技通报. 2024(09): 111-115 .
    8. 唐嘉立,舒宏柯,黄小峰,陈梦宇. 基于STAtt-DGCN模型的高速公路短时交通流预测. 市政技术. 2024(11): 84-91+126 .
    9. 蒋亚楠,郑林枫,许强,汤明高,朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型. 测绘学报. 2024(06): 1128-1139 .
    10. 龚循强,邱万锦,吕开云,张通,张瑞,罗升. 变分模态分解与自适应图卷积门控循环网络的交通流量组合预测模型. 武汉大学学报(信息科学版). 2024(12): 2329-2341 .
    11. 郭鹏超,邓洪高,孙希延,纪元法. 基于奇异谱分析与ARIMA-LSTM的滑坡位移预测. 计算机仿真. 2024(12): 523-530 .
    12. 成睿,李素敏,韩追,毛嘉骐,李彦臣. 时序InSAR与GWO-VMD相结合的地表沉降预测. 贵州大学学报(自然科学版). 2023(03): 78-85 .
    13. 成睿,李素敏,毛嘉骐,李凡,毕自航,袁利伟. 基于时序InSAR监测的VMD-SSA-LSTM矿区地表形变预测模型研究. 化工矿物与加工. 2023(08): 39-46 .
    14. 王朝阳,李丽敏,王莲霞,任瑞斌,符振涛,崔成涛. 基于滑坡累积位移的滑坡体危险状态分析. 人民珠江. 2023(08): 118-126 .

    Other cited types(10)

Catalog

    Article views (454) PDF downloads (85) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return