ZHOU Fangbin, MENG Fanyi, ZOU Lianhua, LI Zechen, WANG Jun. Automatic Extraction of Digital Micro Landform for Transmission Lines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1398-1405. DOI: 10.13203/j.whugis20200329
Citation: ZHOU Fangbin, MENG Fanyi, ZOU Lianhua, LI Zechen, WANG Jun. Automatic Extraction of Digital Micro Landform for Transmission Lines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1398-1405. DOI: 10.13203/j.whugis20200329

Automatic Extraction of Digital Micro Landform for Transmission Lines

Funds: 

The National Natural Science Foundation of China 41671446

the Natural Science Foundation of Hunan Province 2021JJ30702

the Open Foundation of Key Laboratory of Hunan Province kfj140502

the Scientific Research and Innovation Project by Graduate Students of Academic Degree in Changsha University of Science & Technology CX2020SS17

More Information
  • Author Bio:

    ZHOU Fangbin, PhD, specializes in digital terrain analysis. E-mail: Arthur1975@126.com

  • Corresponding author:

    MENG Fanyi, PhD. E-mail: ubunt9@163.com

  • Received Date: October 21, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objects  Micro landform is an important basis for safe operation of transmission lines engineer‍ing, the risk division of lines icing and the calculation of energy consumption during the construction period of transmission lines. As the national grid extends and voltage levels increases, there are a lot of transmission lines passing through the micro landform area and damaged seriously. The traditional macro geomorphologic map can not show the micro landform characteristics accurately. It is subjective and costly for identifying micro landform by experts on the spot base on aerial photography and satellite images. Furthermore, it is difficult to meet actual engineering requirements. The automatic extraction micro landform of transmission lines is not only a requirement for digital transmission lines landform analysis precisely, but also a prerequisite and guarantee for the construction of power grid projects under complex landform conditions.
      Methods  According to the classification system of micro landform in the specifications, the micro landform types of transmission lines were investigated and five micro landform types including yakou, mountain, uplift, canyon and vapor were proposed. The micro landform type with yakou, mountain, uplift, canyon focuses on regional terrain complexity and relief, as while vapour landform focuses on the causes of the disaster. A decision-making scheme was proposed by terrain position index, slope, relative el‍evation and water distance, and a method of transmission line micro landform extraction based on grid dig‍ital elevation model(DEM) was constructed. About the vapor landform, the water distribution data were applied to the experimental area, the water area units were divided, and water body distance was calculated by grid statistics.
      Results  9 transmission lines DEM data of a power grid company during 2012—2018 were used for extraction experiment. The micro landform type of yakou, mountain, uplift, canyon and vapor was extracted effectively, the position and tendency of the micro landform could be discriminated by the extraction results, and the statistical parameters of each transmission lines micro landform in the experimental area were obtained. A comparative analysis of disaster data form the influence of micro landform was add‍ed. It was found that the proportion of typical micro landform area where the disaster occurred was over 90%, much higher than the proportion of micro landform in the non-disaster area.
      Conclusions  The topographic position index, slope, relative elevation and water body distance were adopted to describe the five typical micro landform characteristics of the transmission line with digital terrain analysis technology and the existing transmission line micro landform classification system. Mined the micro landform information, a micro landform extraction method of grid DEM for transmission line was established. Compared with the traditional manual sketching method, it is simple and efficient, and the boundary contour of the extraction results was obvious, which could provide basic support for transmission line construction.
  • [1]
    徐政, 薛英林, 张哲任, 等. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34 (29): 5051-5062 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201429007.htm

    Xu Zheng, Xue Yinglin, Zhang Zheren, et al. VSCHVDC Technology Suitable for Bulk Power Overhead Line Transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201429007.htm
    [2]
    袁海燕, 傅正财, 魏本刚, 等. 综合考虑风偏、地形和工作电压的特高压交流线路雷电绕击性能[J]. 电工技术学报, 2009, 24 (5): 148-153 doi: 10.3321/j.issn:1000-6753.2009.05.024

    Yuan Haiyan, Fu Zhengcai, Wei Bengang, et al. Lightning Shielding Failure Analysis of UHVAC Transmission Lines Based on Improved EGM[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 148-153 doi: 10.3321/j.issn:1000-6753.2009.05.024
    [3]
    王守礼. 影响电线覆冰因素的研究与分析[J]. 电网技术, 1994, 18(4): 18-24 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS404.004.htm

    Wang Shouli. Study and Analysis of the Factors Affecting Wire Ice Coating[J]. Power System Technology, 1994, 18(4): 18-24 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS404.004.htm
    [4]
    陈家宏, 赵淳, 谷山强, 等. 我国电网雷电监测与防护技术现状及发展趋势[J]. 高电压技术, 2016, 42(11): 3361-3375 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611001.htm

    Chen Jiahong, Zhao Chun, Gu Shanqiang, et al. Present Status and Development Trend of Lightning Detection and Protection Technology of Power Grid in China[J]. High Voltage Engineering, 2016, 42 (11): 3361-3375 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201611001.htm
    [5]
    张弦. 输电线路中微地形和微气象的覆冰机制及相应措施[J]. 电网技术, 2007, 31(S2): 87-89 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS2007S2024.htm

    Zhang Xian. Mechanism and Countermeasures for Ice-Coated Transmission Line in Micro-Terrain and Microclimate Region[J]. Power System Technology, 2007, 31(S2): 87-89 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS2007S2024.htm
    [6]
    陈水明, 何金良, 曾嵘, 等. 输电线路雷电防护技术研究(一): 雷电参数[J]. 高电压技术, 2009, 35 (12): 2903-2909 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912005.htm

    Chen Shuiming, He Jinliang, Zeng Rong, et al. Lightning Protection Study of Transmission Line Part I: Lightning Parameters[J]. High Voltage Engineering, 2009, 35(12): 2903-2909 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912005.htm
    [7]
    Zhao Q Z, Yang Q, Zheng H Y, et al. Method of Calculating Shielding Failure Flashover Times of Transmission Line in Complex Terrain Area[C]// 2012 International Conference on High Voltage Engineering and Application, Shanghai, China, 2012
    [8]
    林峰, 林韩, 廖福旺, 等. 统计分析输电线路雷害与微地形关系的新方法[J]. 高电压技术, 2009, 35(6): 1362-1369 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200906021.htm

    Lin Feng, Lin Han, Liao Fuwang, et al. New Method for Statistic Analysis of the Relationship Between the Lightning Disturbance of Transmission Line and the Microtopography[J]. High Voltage Engineering, 2009, 35(6): 1362-1369 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200906021.htm
    [9]
    陈驰, 麦晓明, 宋爽, 等. 机载激光点云数据中电力线自动提取方法[J]. 武汉大学学报·信息科学版, 2015, 40(12): 1600-1605 doi: 10.13203/j.whugis20130573

    Chen Chi, Mai Xiaoming, Song Shuang, et al. Automatic Power Lines Extraction Method from Airborne LiDAR Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2015, 40 (12): 1600-1605 doi: 10.13203/j.whugis20130573
    [10]
    张继贤, 段敏燕, 林祥国, 等. 激光雷达点云电力线三维重建模型的对比与分析[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1565-1572 doi: 10.13203/j.whugis20150385

    Zhang Jixian, Duan Minyan, Lin Xiangguo, et al. Comparison and Analysis of Models for 3D Power Line Reconstruction Using LiDAR Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1565-1572 doi: 10.13203/j.whugis20150385
    [11]
    Dornik A, Drăguţ L, Urdea P. Classification of Soil Types Using Geographic Object-Based Image Analysis and Random Forests[J]. Pedosphere, 2018, 28(6): 913-925 doi: 10.1016/S1002-0160(17)60377-1
    [12]
    薛凯凯, 熊礼阳, 祝士杰, 等. 基于DEM的黄土崾岘提取及其地形特征分析[J]. 地球信息科学学报, 2018, 20(12): 1710-1720 doi: 10.12082/dqxxkx.2018.180358

    Xue Kaikai, Xiong Liyang, Zhu Shijie, et al. Extraction of Loess Dissected Saddle and Its Terrain Analysis by Using Digital Elevation Models[J]. Journal of Geo-Information Science, 2018, 20(12): 1710-1720 doi: 10.12082/dqxxkx.2018.180358
    [13]
    陈永刚, 汤国安, 周毅, 等. 基于多方位DEM地形晕渲的黄土地貌正负地形提取[J]. 地理科学, 2012, 32(1): 105-109 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201201018.htm

    Chen Yonggang, Tang Guoan, Zhou Yi, et al. The Positive and Negative Terrain of Loess Plateau Extraction Based on the Multi-azimuth DEM Shaded Relief[J]. Scientia Geographica Sinica, 2012, 32 (1): 105-109 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201201018.htm
    [14]
    程维明, 周成虎, 柴慧霞, 等. 中国陆地地貌基本形态类型定量提取与分析[J]. 地球信息科学学报, 2009, 11(6): 725-736 doi: 10.3969/j.issn.1560-8999.2009.06.007

    Cheng Weiming, Zhou Chenghu, Chai Huixia, et al. Quantitative Extraction and Analysis of Basic Morphological Types of Land Geomorphology in China[J]. Journal of Geo - Information Science, 2009, 11(6): 725-736 doi: 10.3969/j.issn.1560-8999.2009.06.007
    [15]
    贾腾斌, 吴发启, 赵龙山, 等. 坡耕地上耕作形成的微地形复杂度特征与分析[J]. 水土保持学报, 2013, 27(4): 152-156 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201304030.htm

    Jia Tengbin, Wu Faqi, Zhao Longshan, et al. Micro-relief Slope Surface Complexity Characteristics of Sloping Farm Land Under Different Tillage Practices[J]. Journal of Soil and Water Conservation, 2013, 27(4): 152-156 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201304030.htm
    [16]
    蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京: 中国电力出版社, 2009

    Jiang Xingliang, Shu Lichun, Sun Caixin. Pollution and Icing Insulation of Power System[M]. Beijing: China Electric Power Press, 2009
    [17]
    康基伟. 微地形和小气候区线路覆冰影响因素分析及工程实例[J]. 郑州大学学报(工学版), 2013, 34(1): 103-107 doi: 10.3969/j.issn.1671-6833.2013.01.025

    Kang Jiwei. Analysis of Ice-Covering Transmission Line in Micro-Terrain and Micro-Climate Region [J]. Journal of Zhengzhou University(Engineering Science), 2013, 34(1): 103-107 doi: 10.3969/j.issn.1671-6833.2013.01.025
    [18]
    夏智宏, 周月华, 刘敏, 等. 湖北省电线积冰微地形因子影响识别研究[J]. 气象, 2012, 38(1): 103-108 doi: 10.3969/j.issn.1674-7097.2012.01.012

    Xia Zhihong, Zhou Yuehua, Liu Min, et al. The Recognization and Study of Microrelief's Influence on Wire Icing in Hubei Province[J]. Meteorological Monthly, 2012, 38(1): 103-108 doi: 10.3969/j.issn.1674-7097.2012.01.012
    [19]
    殷兴青. 3S技术在架空输电线路勘测中的应用[J]. 地矿测绘, 2010, 26(4): 44-45 doi: 10.3969/j.issn.1007-9394.2010.04.015

    Yin Xingqing. Application of 3S Technology to Power Transmission Line Reconnaissance[J]. Surveying and Mapping of Geology and Mineral Resources, 2010, 26(4): 44-45 doi: 10.3969/j.issn.1007-9394.2010.04.015
    [20]
    Head J W, Weiss D K. Testing Landslide and Atmospheric-Effects Models for the Formation of Doublelayered Ejecta Craters on Mars[J]. Meteoritics And Planetary Science, 2018, 53(4): 741-777 doi: 10.1111/maps.12859
    [21]
    田瑞云, 王玉宽, 傅斌, 等. 基于DEM的地形单元多样性指数及其算法[J]. 地理科学进展, 2013, 32(1): 121-129 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201301014.htm

    Tian Ruiyun, Wang Yukuan, Fu Bin, et al. DEMBased Topographic Unit Diversity Index and Its Algorithm[J]. Progress in Geography, 2013, 32(1): 121-129 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201301014.htm
    [22]
    330 kV~750 kV架空输电线路勘测规范: GB/T 50548—2018[S]. 北京: 中国计划出版社, 2018

    Standard for Investigation and Surveying of 330 kV~ 750 kV Overhead Transmission Line: GB/T 50548—2018[S]. Beijing: China Planning Press, 2018
    [23]
    Reu J, Bourgeois J, Bats M, et al. Application of the Topographic Position Index to Heterogeneous Landscapes[J]. Geomorphology, 2013, 186: 39-49 doi: 10.1016/j.geomorph.2012.12.015
    [24]
    杨滔, 邹岸新. 地形对1 000 kV交流输电线路地面工频电场的影响分析[J]. 高压电器, 2019, 55(12): 112-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201912017.htm

    Yang Tao, Zou Anxin. Analysis on Effect of Topography on Ground Power Frequency Electric Field of 1 000 kV AC Transmission Line[J]. High Voltage Apparatus, 2019, 55(12): 112-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201912017.htm
    [25]
    周学云, 高文良, 吴亚平, 等. 定量研究雅安地形坡向坡度对降水分布的影响[J]. 气象科学, 2019, 39(3): 322-335 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201903005.htm

    Zhou Xueyun, Gao Wenliang, Wu Yaping, et al. Quantitative Study on the Influence of Terrain Aspect and Gradient on the Precipitation Distribution in Ya'an[J]. Journal of the Meteorological Sciences, 2019, 39(3): 322-335 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201903005.htm
    [26]
    周成虎, 程维明, 钱金凯, 等. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6): 707-724 doi: 10.3969/j.issn.1560-8999.2009.06.006

    Zhou Chenghu, Cheng Weiming, Qian Jinkai, et al. Research on the Classification System of Digital Land Geomorphology of 1∶1 000 000 in China[J]. Journal of Geo -Information Science, 2009, 11(6): 707-724 doi: 10.3969/j.issn.1560-8999.2009.06.006
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (621) PDF downloads (73) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return