Citation: | YANG Jun, YU Xizi. Semantic Segmentation of High-Resolution Remote Sensing Images Based on Improved FuseNet Combined with Atrous Convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1071-1080. DOI: 10.13203/j.whugis20200305 |
[1] |
Kampffmeyer M, Salberg A B, Jenssen R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks [C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 2016
|
[2] |
Wang H, Wang Y, Zhang Q, et al. Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images[J]. Remote Sensing, 2017, 9(5): 1-15
|
[3] |
Mou Lichao, Hua Yuansheng, Zhu Xiaoxiang. A Relation-Augmented Fully Convolutional Network for Semantic Segmentation in Aerial Scenes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019
|
[4] |
Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015
|
[5] |
Hoffman J, Gupta S, Darrell T. Learning with Side Information Through Modality Hallucination[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016
|
[6] |
Hazirbas C, Ma L, Domokos C, et al. FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture[C]//Asian Conferen-ce on Computer Vision, Taipei, China, 2016
|
[7] |
Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4): 640-651
|
[8] |
Badrinarayanan V, Kendall A, Segnet R C. A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495 doi: 10.1109/TPAMI.2016.2644615
|
[9] |
Sherrah J. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery[EB/OL]. (2016-06-08)[2020-06-22]. https://www.doc88.com/p-0704858988942.html
|
[10] |
Nogueira K, Penatti O A B, Santos J A D. Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification[J]. Pattern Recognition, 2017, 61: 539-556 doi: 10.1016/j.patcog.2016.07.001
|
[11] |
张康, 黑保琴, 周壮, 等. 变异系数降维的CNN高光谱遥感图像分类[J]. 遥感学报, 2018, 22(1): 91-100 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801008.htm
Zhang Kang, Baoqin Hei, Zhou Zhuang, et al. CNN with Coefficient of Variation-Based Dimensionality Reduction for Hyperspectral Remote Sensing Images Classification[J]. Journal of Remote Sensing, 2018, 22(1): 91-100 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801008.htm
|
[12] |
Everingham M, Eslami S M A, van Gool L, et al. The Pascal Visual Object Classes Challenge: A Retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136 doi: 10.1007/s11263-014-0733-5
|
[13] |
Gerke M, Rottensteiner F, Wegner J D, et al. ISPRS Semantic Labeling Contest[J]. Remote Sensing, 2020, 12(3): 417-446 doi: 10.3390/rs12030417
|
[14] |
Ngiam J, Khosla A, Kim, et al. Multimodal Deep Learning[C]// The 28th International Conference on Machine Learning, Washington DC, USA, 2011
|
[15] |
Chen L C, Papandreou G, Kokkinos I, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFS[J]. Computer Science, 2014, 4: 357-361
|
[16] |
Luo W, Li Y, Urtasun R, et al. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks[C]// The 30th Conference on Advances in Neural Information Processing Systems, Barcelona, Spain, 2016
|
[17] |
Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions[C]//International Conference on Learning Representations, San Juan, Puerto Rico, 2016
|
[18] |
Liu Y, Piramanayagam S, Monteiro S T, et al. Dense Semantic Labeling of Very-High-Resolution Aerial Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawii, USA, 2017
|
[19] |
赵俊, 郭飞霄, 李琦. PEIV模型WTLS估计的Fisher-Score算法[J]. 武汉大学学报∙信息科学版, 2019, 44(2): 214-220 doi: 10.13203/j.whugis20170061
Zhao Jun, Guo Feixiao, Li Qi. Fisher-Score Algorithm of WTLS Estimation for PEIV Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 214-220 doi: 10.13203/j.whugis20170061
|
[20] |
Chen G, Zhang X, Wang Q, et al. Symmetrical Dense-Shortcut Deep Fully Convolutional Networks for Semantic Segmentation of Very-High-Resolution Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1633-1644 doi: 10.1109/JSTARS.2018.2810320
|
[21] |
Wei Y, Xiao H, Shi H, et al. Revisiting Dilated Convolution: A Simple Approach for Weakly-and Semi-supervised Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[22] |
Lin G S, Shen C H, van den Hengel A, et al. Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016
|
[23] |
Paisitkriangkrai S, Sherrah J, Janney P, et al. Effective Semantic Pixel Labelling with Convolutional Networks and Conditional Random Fields[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 2015
|
[24] |
Audebert N, Saux B L, Lefèvre S. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-Scale Deep Networks[C]//The 13th Asian Conference on Computer Vision, Taipei, China, 2016
|