Citation: | ZHANG Guoyong, GONG Jianhua, SUN Jun, ZHOU Jieping, LI Wenhang, ZHANG Lihui, WANG Dongchuan, LI Wenning, HU Weidong, FAN Hongkui. An Interactive Individual Spatiotemporal Trajectory Extraction and Quality Evaluation Method for COVID-19 Cases[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 177-183. DOI: 10.13203/j.whugis20200290 |
[1] |
许小可, 文成, 张光耀, 等.新冠肺炎爆发前期武汉外流人口的地理去向分布及影响[J].电子科技大学学报, 2020, 49: 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003002.htm
Xu Xiaoke, Wen Cheng, Zhang Guangyao, et al. The Geographical Destination Distribution and Effect of Outflow Population of Wuhan When the Outbreak of the 2019-nCoV Pneumonia[J]. Journal of University of Electronic Science and Technology of China, 2020, 49: 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202003002.htm
|
[2] |
Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal Spread of the 2014 Outbreak of Ebola Virus Disease in Liberia and the Effectiveness of Non-pharmaceutical Interventions: A Computational Modelling Analysis[J]. The Lancet Infectious Diseases, 2015, 15(2): 204-211 doi: 10.1016/S1473-3099(14)71074-6
|
[3] |
Li Z, Yin W, Clements A, et al. Spatiotemporal Analysis of Indigenous and Imported Dengue Fever Cases in Guangdong Province, China[J]. BMC Infectious Diseases, 2012, 12(1): 132 doi: 10.1186/1471-2334-12-132
|
[4] |
Xu B, Gutierrez B, Mekaru S, et al. Epidemiological Data from the COVID-19 Outbreak, Real-Time Case Information[J]. Scientific Data, 2020, 7(1): 1-6 doi: 10.1038/s41597-019-0340-y
|
[5] |
李德仁, 邵振峰, 于文博, 等.基于时空位置大数据的公共疫情防控服务让城市更智慧[J].武汉大学学报·信息科学版, 2020, 45(4): 475-487, 556 doi: 10.13203/j.whugis20200145
Li Deren, Shao Zhenfeng, Yu Wenbo, et al. Public Epidemic Prevention and Control Services Based on Big Data of Spatiotemporal Location Make Cities More Smart[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 475-487, 556 doi: 10.13203/j.whugis20200145
|
[6] |
北京极海纵横信息技术有限公司. gh-2019-nCoV-community-data[OL]. https://gitee.com/geohey/gh-2019-nCoV-community-data, 2020
GeoHey. gh-2019-nCoV-community-data[OL]. https://gitee.com/geohey/gh-2019-nCoV-community-data, 2020
|
[7] |
北京航空航天大学大数据科学与脑机智能高精尖创新中心.新冠疫情确诊患者轨迹结构化数据[OL]. https://github.com/BDBC-KG-NLP/COVID-19-tracker, 2020
Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University. COVID-19-tracker[OL]. https://github.com/BDBC-KG-NLP/COVID-19-tracker, 2020
|
[8] |
Young T, Hazarika D, Poria S, et al. Recent Trends in Deep Learning Based Natural Language Processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75 doi: 10.1109/MCI.2018.2840738
|
[9] |
Corvey W J, Vieweg S, Rood T, et al. Twitter in Mass Emergency: What NLP Can Contribute[C]. NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, Los Angeles, California, USA, 2010
|
[10] |
Qin T, Xiao R, Fang L, et al. An Efficient Location Extraction Algorithm by Leveraging Web Contextual Information[C]. The 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, San Jose, CA, USA, 2010
|
[11] |
Neubig G, Matsubayashi Y, Hagiwara M, et al. Safety Information Mining—What Can NLP Do in a Disaster[C]. The 5th International Joint Conference on Natural Language Processing, Chiang Mai, Thailand, 2011
|
[12] |
Dhavase N, Bagade A M. Location Identification for Crime & Disaster Events by Geoparsing Twitter[C]. International Conference for Convergence for Technology, Pune, India, 2014
|
[13] |
Sit M A, Koylu C, Demir I. Identifying Disaster-Related Tweets and Their Semantic, Spatial and Temporal Context Using Deep Learning, Natural Language Processing and Spatial Analysis: A Case Study of Hurricane Irma[J]. International Journal of Digital Earth, 2019, 12(11): 1205-1229 doi: 10.1080/17538947.2018.1563219
|
[14] |
Wang M. Following the Spread of Zika with Social Media: The Potential of Using Twitter to Track Epidemic Disease[D]. Montreal, Quebec, Canada: Concordia University, 2017
|
[15] |
Keller M, Freifeld C C, Brownstein J S. Automated Vocabulary Discovery for Geo-parsing Online Epidemic Intelligence[J]. BMC Bioinformatics, 2009, 10(1): 385 doi: 10.1186/1471-2105-10-385
|
[16] |
Klein A, Magge A, O'Connor K, et al. A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter[J]. medRxiv, 2020, DOI: 10.1101/2020.04.19.20069948
|
[17] |
Nikolajevs J, Jekabsons G. Automatic Extraction of Geographic Context from Textual Data[J]. Computational Science and Techniques, 2014, 2(1): 229-237
|
[18] |
Otter D W, Medina J R, Kalita J K. A Survey of the Usages of Deep Learning for Natural Language Processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, DOI: 10.1109/TNNLS.2020.2979670
|
[19] |
Gull K, Padhye S, Jain D S. A Comparative Analysis of Lexical/NLP Method with WEKA's Bayes Classifier[J]. International on Recent and Innovation Trends in Computing and Communication (IJRITCC), 2017, 5(2): 221-227
|
[20] |
周晓光, 赵肄江, 李光强, 等.顾及信誉的众源时空数据模型[J].武汉大学学报·信息科学版, 2018, 43(1): 10-16 doi: 10.13203/j.whugis20150378
Zhou Xiaoguang, Zhao Yijiang, Li Guangqiang, et al. Crowdsourcing Spatio-Temporal Data Model Considering Reputation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 10-16 doi: 10.13203/j.whugis20150378
|
[21] |
Antoniou V, Skopeliti A. Measures and Indicators of VGI Quality: An Overview[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, Ⅱ-3/W5: 345-351
|
[22] |
王劲峰, 徐成东.地理探测器:原理与展望[J].地理学报, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and Prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm
|