QIN Hongnan, MA Haitao, YU Zhengxing. Analysis Method of Landslide Early Warning and Prediction Supported by Ground-Based SAR Technology[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1697-1706. DOI: 10.13203/j.whugis20200268
Citation: QIN Hongnan, MA Haitao, YU Zhengxing. Analysis Method of Landslide Early Warning and Prediction Supported by Ground-Based SAR Technology[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1697-1706. DOI: 10.13203/j.whugis20200268

Analysis Method of Landslide Early Warning and Prediction Supported by Ground-Based SAR Technology

Funds: 

The National Key Research and Development Program of China 2017YFC0804603

The National Key Research and Development Program of China 2018YFC0808402

More Information
  • Author Bio:

    QIN Hongnan, PhD, senior engineer, specializes in dynamic disaster monitoring and early warning of slope. E-mail:qinhn@chinasafety.ac.cn

  • Received Date: May 30, 2020
  • Published Date: November 18, 2020
  •   Objectives  Landslide early warning and prediction is the key and difficult problem in landslide dynamic disaster research. The timeliness and accuracy of early warning are two key indicators to evaluate the effect of landslide early warning and prediction.
      Methods  Remote sensing monitoring is an important technology for landslide disaster prevention and control. Ground-based SAR(synthetic aperture radar)provides an advanced technology for remote sensing monitoring of landslides in short distance, and provides a wealth of data sources for accurate positioning of landslides, delineating the scale of landslides, analysing and judging the risk of landslides and predicting the time of landslides. Based on the classic three-stage theory of slope deformation evolution, we adopt the monitoring data of ground-based SAR, which has the characteristics of near real-time, coverage monitoring area and surface deformation information. Combined with the characteristics of the short period, high density and surface coverage of slope monitoring data, a dual index landslide early warning method based on deformation speed and deformation area is proposed. According to the negative correlation between deformation velocity time series curve and slope stability, we put forward the processing methods of velocity inversion, de-limit and unequal period smooth processing, and establish the landslide prediction model with fast convergence of stability.
      Results  The landslide early warning method with double indexes of deformation velocity and deformation area can effectively improve the accuracy rate of landslide warning, and then the accuracy of landslide prediction can be effectively improved by taking the reciprocal of velocity, removing the limit value and unequal period smoothing treatment. Different periods of data processing methods have their own applicability, short processing cycle processing data curve, the prediction of landslide occurrence time is more accurate, the prediction of landslide occurrence time is late, long processing cycle is opposite.
      Conclusions  Through the field practice and application of the open pit slope, it shows that the early warning and prediction method has strong practicality and accurate prediction results.
  • [1]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报, 2007, 26(3):433-454 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200703001

    Huang Ruiqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200703001
    [2]
    吴星辉, 马海涛, 张杰.地基合成孔径雷达的发展现状及应用[J].武汉大学学报·信息科学版, 2019, 44(7):1 073-1 081 doi: 10.13203/j.whugis20190058

    Wu Xinghui, Ma Haitao, Zhangjie.Development Status and Application of Ground-Based Synthetic Aperture Radar[J].Geomatics and Information Science of Wuhan University, 2019, 44(7):1 073-1 081 doi: 10.13203/j.whugis20190058
    [3]
    许强, 董秀军, 李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息科学版, 2019, 44(7): 957‐966 doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957‐966 doi: 10.13203/j.whugis20190088
    [4]
    Antonello G, Casagli N, Farina P, et al. Ground-Based SAR Interferometry for Monitoring Mass Movements[J]. Landslide, 2004, 1(1):21-28 doi: 10.1007/s10346-003-0009-6
    [5]
    Wang Yanping, Tan Weixian, Hong Wen, et al. Ground-Based SAR for Man-Made Structure Deformation Monitoring[C].The 1st International Workshop Spatial Information Technologies for Monitoring the Deformation of Large-Scale Man-Made Linear Features, Hong Kong, China, 2010
    [6]
    Antonello G, Tarchi D, Casagli N, et al. SAR Interferometry from Satellite and Ground-based System for Monitoring Deformations on the Stromboli Volcano[C]. International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004
    [7]
    Guido L, Massimiliano P, Daniele M, et al. Ground-Based Radar Interferometry for Landslides Monitoring: Atmospheric and Instrumental Decorrelation Sources on Experimental Data[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2 454-2 466 doi: 10.1109/TGRS.2004.836792
    [8]
    Atzeni C, Barla M, Pieraccini M, et al.Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic-Aperture Radar[J]. Rock Mechanics Rock Engineering, 2015, 48: 235-246 doi: 10.1007/s00603-014-0554-4
    [9]
    Pieraccini M, Noferini L, Mecatti D, et al. Integration of Radar Interferometry and Laser Scanning for Remote Monitoring of an Urban Site Built on a Sliding Slope[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2 335-2 342 doi: 10.1109/TGRS.2006.873574
    [10]
    Pieraccini M, Casagli N, Luzi G, et al. Landslide Monitoring by Ground-Based Radar Interferometry: A Field Test in Valdarno (Italy)[J]. International Journal of Remote Sensing, 2003, 24(6):1 385-1 391 doi: 10.1080/0143116021000044869
    [11]
    Rose N D, Hungr O. Forecasting Potential Rock Slope Failure in Open Pit Mines Using the Inverse-Velocity Method[J]. International Journal of Rock Mechanics, 2007, 44(2):308-320 doi: 10.1016/j.ijrmms.2006.07.014
    [12]
    Crosta G B, Agliardi F.How to Obtain Alert Velocity Thresholds for Large Rock Slides[J].Physics Chemistry of the Earth Parts, 2002, 27(36):1 557-1 565 doi: 10.1016/S1474-7065(02)00177-8
    [13]
    Ji K H, Herring T A, Lenos A L. Near Real-Time Monitoring of Volcanic Surface Deformation from GPS Measurements at Long Valley Caldera, California[J]. Geophysical Research Letters, 2013, 40:1 054-1 058 doi: 10.1002/grl.50258
    [14]
    Tu R, Wang R, Ge M, et al. Cost Effective Monitoring of Ground Motion Related to Earthquakes, Landslides, or Volcanic Activity by Joint Use of a Single-Frequency GPS and a MEMS Accelerometer[J].Geophysical Research Letters, 2013, 40:3 825-3 829 doi: 10.1002/grl.50653
    [15]
    葛大庆, 戴可人, 郭兆成, 等.重大地质灾害隐患早期识别中的思考与建议[J].武汉大学学报·信息科学版, 2019, 44(7): 949‐956 doi: 10.13203/j.whugis20190094

    Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949‐956 doi: 10.13203/j.whugis20190094
    [16]
    李振洪, 宋闯, 余琛, 等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
    [17]
    秦四清, 王思敬.斜坡滑动失稳演化的非线性机制与过程研究进展[J].地球与环境, 2005, 33(3):75-82 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200503012

    Qin Siqing, Wang Sijing. Advances in Research on Nonlinear Evolutionary Mechanism and Process of Instabilization of Planar-Slip Slope[J]. Earth and Environment, 2005, 33(3):75-82 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200503012
  • Related Articles

    [1]XIAO Ruya, WANG Xun, SUN Jingyi, LI Tao, TIAN Xin, HE Xiufeng. Comparisons of Differential Interferometry of Chinese SAR Satellites in Ground Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240468
    [2]QIN Hongnan, MA Haitao, YU Zhengxing, LIU Yuxi. Landslide Early Warning Method Based on Dynamic High Frequency Data of Ground-Based Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1330-1336. DOI: 10.13203/j.whugis20220152
    [3]WU Xinghui, MA Haitao, ZHANG Jie. Development Status and Application of Ground-Based Synthetic Aperture Radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1073-1081. DOI: 10.13203/j.whugis20190058
    [4]LIU Guoxiang, ZHANG Bo, ZHANG Rui, CAI Jialun, FU Yin, LIU Qiao, YU Bing, LI Zhilin. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. DOI: 10.13203/j.whugis20190077
    [5]XU Yaming, ZHOU Xiao, WANG Peng, XING Cheng. A Method of Constructing Permanent Scatterers Network to Correct the Meteorological Disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007-1012. DOI: 10.13203/j.whugis20140507
    [6]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [7]SHI Lei, LI Pingxiang, YANG Jie. SAR Imagery Registration Based on SIFT and Data Snooping[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1296-1299.
    [8]CHEN Fulong, WANG Chao, ZHANG Hong, WU Fan. Multi-temporal SAR Images Classification Using Case-Based Reasoning[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1154-1157.
    [9]ZHANG Jing, WANG Guohong, LIN Xueyuan. Edge Detection in SAR Segmentation Based on Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 864-867.
    [10]NI Ling, ZHANG Jianqing, YAO Wei. SAR Image's Texture Analysis Based on Wavelet[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 367-370.
  • Cited by

    Periodical cited type(20)

    1. 李学良,李宏艳,白国良. 基于静力水准的采空区地表变形监测及误差分析. 煤炭技术. 2024(02): 154-158 .
    2. 向泽君,李超,滕明星. 圆弧式地基合成孔径雷达在边坡变形监测中的应用. 北京测绘. 2024(02): 270-276 .
    3. 张世佳,温经林,张华,邹江湖,叶军明,王一帆,成德飞. 多雾条件下边坡雷达在露天矿山边坡监测中的应用研究. 矿产勘查. 2024(S1): 243-248 .
    4. 温经林,张小军,侯杉山,张世佳,黄家新,蔡璋. 边坡雷达在临湖露天矿山边坡监测中的应用. 矿产勘查. 2024(S1): 219-226 .
    5. 张慧敏,邹进,李洪彦,杨加能,李柯瑶. 基于轨道雷达在某露天-地下联合开采边坡监测中的应用. 矿产勘查. 2024(S1): 256-263 .
    6. 秦宏楠,马海涛,于正兴,刘玉溪. 地基雷达干涉测量动态高频次数据用于滑坡早期预警方法研究. 武汉大学学报(信息科学版). 2024(08): 1330-1336 .
    7. 刘冀昆,杨晓琳,王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用. 地质科技通报. 2023(01): 42-51+61 .
    8. 屈晓明. 基于改进遗传算法的露天采石场失稳边坡临滑预警方法. 中国煤炭地质. 2023(03): 55-59 .
    9. 任瑞斌,李丽敏,王莲霞,崔成涛,符振涛. 基于PSO-LSSVM的广西花岗岩分布区滑坡易发性评价. 国外电子测量技术. 2023(05): 157-162 .
    10. 刘玉溪,杨凤芸,秦宏楠. 基于地基合成孔径雷达数据的预警预报方法研究. 矿冶工程. 2023(03): 33-37 .
    11. 梁叙,李兴明. 湖北巴东组滑坡精细化识别方法研究. 资源环境与工程. 2023(04): 464-474 .
    12. 林永春,徐兴港,李永昌,肖亚辉,张朝辉. 金属露天矿山凸型渗水高陡边坡监测变形规律研究. 中国安全生产科学技术. 2023(S1): 60-66 .
    13. 顾玉明,张亦海,马海涛,于正兴. 便携阵列雷达在露转地矿山溃泥应急救援中的应用研究. 中国安全生产科学技术. 2023(S1): 117-122 .
    14. 周志伟,程翔,周伟,郝卫峰,肖海斌,陈鸿杰,杨魁. 地基SAR在滑坡形变监测中的应用. 测绘通报. 2022(07): 60-63 .
    15. 亓星,修德皓,程关文,陈婉琳,邢睿,李龙飞,傅烨,刘彦伶. 滑坡变形监测数据的实时过滤方法及应用. 水利水电技术(中英文). 2022(07): 129-138 .
    16. 张浩,杨晓琳,候杉山,王彦龙. 边坡变形监测中地基真实孔径雷达成像目标斜距校正研究. 中国安全生产科学技术. 2022(S1): 93-98 .
    17. 夏梦凡,李丽敏,任瑞斌,王朝阳,王智勇,尚艳芳. 基于KPCA-SSA-GRNN的滑坡预报模型. 国外电子测量技术. 2022(09): 109-115 .
    18. 王彦平,崔紫维,曹琨,李洋,林赟,申文杰. 基于注意力网络的地基SAR时序差分相位分类方法. 信号处理. 2021(07): 1207-1216 .
    19. 王晓波,李江,武丽梅,蔡伟,姚国纪. 露天矿边坡地基雷达形变监测应用研究. 矿山测量. 2021(06): 82-87 .
    20. 罗伟,王飞. 基于无人机遥感技术的煤矿地表监测与分析. 煤炭科学技术. 2021(S2): 268-273 .

    Other cited types(10)

Catalog

    Article views (1613) PDF downloads (288) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return