SUI Haigang, HUANG Lihong, LIU Chaoxian. Detecting Building Façade Damage Caused by Earthquake Using CBAM-Improved Mask R-CNN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1660-1668. DOI: 10.13203/j.whugis20200158
Citation: SUI Haigang, HUANG Lihong, LIU Chaoxian. Detecting Building Façade Damage Caused by Earthquake Using CBAM-Improved Mask R-CNN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1660-1668. DOI: 10.13203/j.whugis20200158

Detecting Building Façade Damage Caused by Earthquake Using CBAM-Improved Mask R-CNN

Funds: 

The National Natural Science Foundation of China 41771457

the National Key Research and Development Program of China 2018YFB10046

More Information
  • Author Bio:

    SUI Haigang, PhD, professor, specializes in remote sensing, GIS and disaster emergency response.E-mail: haigang_sui@263.net

  • Corresponding author:

    LIU Chaoxian, PhD. E-mail:cx_leo@whu.edu.cn

  • Received Date: April 14, 2020
  • Published Date: November 18, 2020
  •   Objectives  Building damage information can provide an important basis for the decision making of rapid post-earthquake assessment. Traditional building damage detection techniques mainly focus on the roof surface, thus many damaged buildings with an intact roof surface but collapsed middle floors may be neglected. We propose a method of building façade damage detection based on deep learning and multiresolution segmentation algorithm.
      Methods  The method which integrates the instance segmentation and multiresolution segmentation algorithm is applied to detecting the post-earthquake building façade damage. The first thing is to collect the ground images of post-earthquake buildings in the field and perform the data augmentation. Secondly, we use the convolutional block attention module (CBAM) to improve Mask R-CNN. Then the dataset is input to the improved model for training, and finally a multiresolution segmentation algorithm is adopted to post-process the building façade damage detection results output by the CBAM-Improved Mask R-CNN.
      Results  The experimental results show: (1) Collecting ground images of buildings in the field and performing image augmentation can effectively guarantee the necessary training sample size of the instance segmentation model. (2) The Mask R-CNN improved by CBAM attention mechanism significantly improves the post-earthquake building facade damage detection capabilities, which realizes the precise extraction of damage information from complex building façade backgrounds. (3) In addition, using the multiresolution segmentation algorithm to post-process the building facade damage detection results can obviously solve the blurred boundary problems caused by the accumulation of convolutional layers.
      Conclusions  The proposed method can significantly improve the capability of post-earthquake building façade damage detection when compared to the traditional methods, which also raises the Mask R-CNN's accuracy, precision, recall and F2-score to a certain degree. It can be inferred that the proposed method has the strong potential to be applied to the post-earthquake building façade damage detection and therefore provides an important technical means for detecting the comprehensive and detailed building damage detection caused by earthquake.
  • [1]
    李强, 张景发.不同特征融合的震后损毁建筑物识别研究[J].地震研究, 2016, 39(3):486-493 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201603018

    Li Qiang, Zhang Jingfa. Research on Earthquake Damaged Building Extraction by Different Features Fusion[J].Journal of Seismological Research, 2016, 39(3):486-493 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzyj201603018
    [2]
    陶和平, 刘斌涛, 刘淑珍, 等.遥感在重大自然灾害监测中的应用前景:以5·12汶川地震为例[J].山地学报, 2008, 26(3):276-279 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200803005

    Tao Heping, Liu Bintao, Liu Shuzhen, et al. Natural Hazards Monitoring Using Remote Sensing: A Case Study of 5-12 Wenchuan Earthquake[J]. Journal of Mountain Science, 2008, 26(3):276-279 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb200803005
    [3]
    眭海刚, 刘超贤, 黄立洪, 等.遥感技术在震后建筑物损毁检测中的应用[J].武汉大学学报·信息科学版, 2019, 44(7):1 008-1 019 doi: 10.13203/j.whugis20190070

    Sui Haigang, Liu Chaoxian, Huang Lihong, et al. Application of Remote Sensing Technology in Earthquake-Induced Building Damage Detection[J]. Geomatics and Information Science of Wuhan University, ,2019, 44(7):1 008-1 019 doi: 10.13203/j.whugis20190070
    [4]
    贾宁, 赵鹏祥.浅谈众源地理数据[J].中国科技信息, 2013(12):42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjxx201312007

    Jia Ning, Zhao Pengxiang. Crowdsourcing Geographic Data[J]. China Science and Technology Information, 2013 (12):42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjxx201312007
    [5]
    姜青香, 刘慧平.利用纹理分析方法提取TM图像信息[J].遥感学报, 2004, 8(5):458-464 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200405012

    Jiang Qingxiang, Liu Huiping.Extracting TM Image Information Using Texture Analysis[J]. Journal of Remote Sensing, 2004, 8(5):458-464 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200405012
    [6]
    涂继辉, 眭海刚, 吕枘蓬, 等.基于基尼系数的倾斜航空影像中建筑物立面损毁检测[J].武汉大学学报-信息科学版, 2017, 42(12):1 744-1 748 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201712010

    Tu Jihui, Sui Haigang, Lv Ruipeng, et al. Building Facade Damage Detection Based on the Gini Index from Oblique Aerial Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 744-1 748 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201712010
    [7]
    Vetrivel A, Gerke M, Kerle N, et al. Identification of Structurally Damaged Areas in Airborne Oblique Images Using a Visual-Bag-of-Words Approach[J]. Remote Sensing, 2016, 8(3): 231-252 doi: 10.3390/rs8030231
    [8]
    Kerle N, Fernandez G J, Gerke M.Urban Structural Damage Assessment with Oblique UAV Imagery, Object-Based Image Analysis and Semantic Reasoning[C].The 35th Asian Conference on Remote Sensing, Nay Pyi Taw, Myanmar, 2014
    [9]
    Fernandez G J, Kerle N, Gerke M. UAV-Based Urban Structural Damage Assessment Using Object-Based Image Analysis and Semantic Reasoning[J]. Natural Hazards & Earth System Sciences, 2015, 15(6):1 087-1 101 http://www.tandfonline.com/servlet/linkout?suffix=CIT0014&dbid=16&doi=10.1080%2F10447318.2018.1427831&key=10.5194%2Fnhess-15-1087-2015
    [10]
    He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017
    [11]
    Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1 137-1 149 doi: 10.1109/TPAMI.2016.2577031
    [12]
    Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=994776c264e86f91bd6bda7f694c7564
    [13]
    Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]. The European Conference on Computer Vision, Munich, Germany, 2018
    [14]
    He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C].IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016
    [15]
    谢飞, 穆昱, 管子玉, 等.基于具有空间注意力机制的Mask R-CNN的口腔白斑分割[J].西北大学学报(自然科学版), 2020, 50(1): 9-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb202001002

    Xie Fei, Mu Yu, Guan Ziyu, et al.Oral Leukoplakia (OLK) Segmentation Based on Mask R-CNN with Spatial Attention Mechanism[J].Journal of Northwest University(Natural Science Edition), 2020, 50(1):9-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb202001002
  • Cited by

    Periodical cited type(11)

    1. 杨军,张金影,康玥. 基于自注意力机制的高分遥感影像语义分割. 哈尔滨工程大学学报. 2025(02): 344-354 .
    2. 梁欣荣,冯勃. 基于生成对抗网络的窗户精细结构半监督识别. 测绘与空间地理信息. 2024(02): 186-189 .
    3. 冯德军,郭笑坤,曲晓玉,桂福坤,杨旭. 基于计算机视觉的大黄鱼表型参数测量研究. 中国水产科学. 2024(10): 1174-1185 .
    4. 张钰屏,刘籽琳,陈天其. 遥感影像变化检测研究进展. 电脑与信息技术. 2023(02): 15-18 .
    5. 李家艺,黄昕,胡宇平,张震,张雪婷,张淑蕾,方兴. 夜光影像和高分辨率影像耦合的土耳其Mw 7.8地震建筑倒塌智能解译. 武汉大学学报(信息科学版). 2023(10): 1706-1714 .
    6. 万立志,张运楚,葛浙东,王超. 基于孪生神经网络的小样本人脸识别. 山东建筑大学学报. 2022(01): 79-85+99 .
    7. 仇娇慧,贝绍轶,尹明锋,卿宏军. 基于改进YOLOv5s的齿轮表面缺陷检测. 现代制造工程. 2022(03): 104-113 .
    8. 彭懋磊,郝宁,李垠,张萍. 基于0.2m分辨率遥感影像的震害信息提取仿真. 计算机仿真. 2022(10): 209-213 .
    9. 章天杰,王洋洋,韩海航,罗雪. 基于改进两步式卷积神经网络的沥青路面裂缝识别方法. 公路交通科技. 2022(10): 1-8+58 .
    10. 李雨龙,陈松,李鑫,李昌龙,赵耀耀,李顺. 基于深度学习的管件识别与位姿估计研究. 制造技术与机床. 2022(12): 70-75 .
    11. 郭奕,黄佳芯,邓博奇,刘洋成. 改进Mask R-CNN的真实环境下鱼体语义分割. 农业工程学报. 2022(23): 162-169 .

    Other cited types(18)

Catalog

    Article views (2239) PDF downloads (358) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return